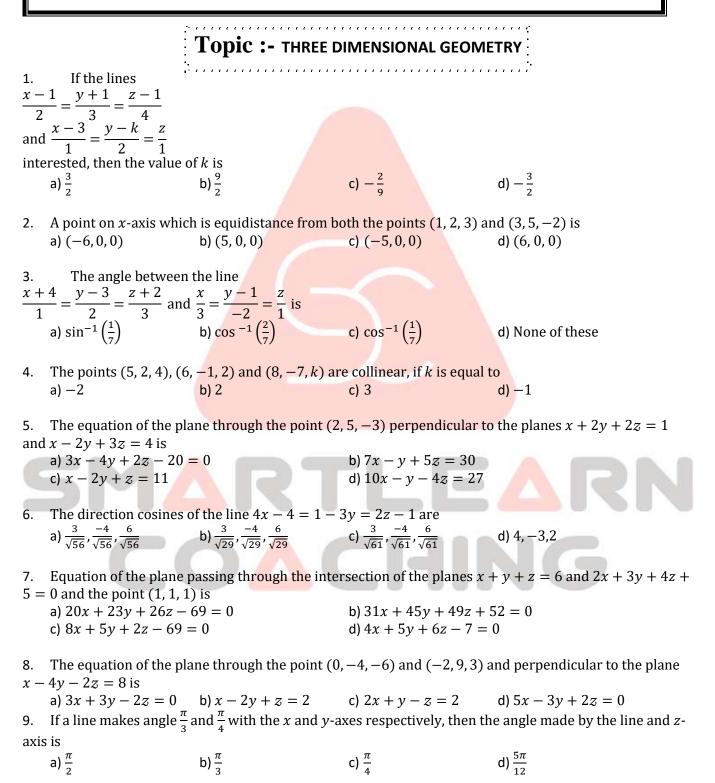


CLASS : XIIth DATE :

SUBJECT : MATHS DPP NO. : 1



10. Let (3, 4, -1) and (-1, 2, 3) are the end points of a diameter of sphere. Then the radius of the sphere is equal to d) 9

- b) 2 c) 3 a) 1
- 11. The points (5, -4, 2), (4, -3, 1), (7, -6, 4) and (8, -7, 5) are the vertices of a) A rectangle c) A parallelogram b) A square d) None of these
- 12. The equation of the plane containing the lines $\vec{r} = \vec{a_1} + \lambda \vec{b}$ and $\vec{r} = \vec{a_2} + \mu \vec{b}$, is

a) $\vec{r} \cdot (\vec{a_1} - \vec{a_2}) \times \vec{b} = [\vec{a_1} \ \vec{a_2} \ \vec{b}]$ b) $\vec{r} \cdot (\vec{a_2} - \vec{a_1}) \times \vec{b} = [\vec{a_1} \ \vec{a_2} \ \vec{b}]$ c) $\vec{r} \cdot (\vec{a_1} + \vec{a_2}) \times \vec{b} = [\vec{a_2} \ \vec{a_1} \ \vec{b}]$ d) None of these

13. If $\left(\frac{1}{2}, \frac{1}{3}, n\right)$ are the direction cosines of a line, then the value of *n* is a) $\frac{\sqrt{23}}{6}$ b) $\frac{23}{6}$ c) $\frac{2}{2}$ d) $\frac{3}{2}$

14. The vector equation of the plane passing through the origin and the line of intersection of the plane \vec{r} . $\vec{a} = \lambda$ and $\vec{r} \cdot \vec{b} = u$ is

a)
$$\vec{r} \cdot (\lambda \vec{a} - \mu \vec{b}) = 0$$
 b) $\vec{r} \cdot (\lambda \vec{b} - \mu \vec{a}) = 0$ c) $\vec{r} \cdot (\lambda \vec{a} + \mu \vec{b}) = 0$ d) $\vec{r} \cdot (\lambda \vec{b} + \mu \vec{a}) = 0$

15. If l_1, m_1, n_1 and l_2, m_2, n_2 are direction cosines of the two lines inclined to each other at an angle, then the direction cosines of the external bisector of the angle between the lines are

 $l_1 + l_2$ $m_1 + m_2$ $n_1 + n_2$ a) $\frac{\iota_1 + \iota_2}{2\sin\theta/2}$, $\frac{1}{2\sin\theta/2}$, $\frac{1}{2\sin\theta/2}$, $\frac{1}{2\sin\theta/2}$ b) $\frac{l_1+l_2}{2\cos\theta/2}$, $\frac{m_1+m_2}{2\cos\theta/2}$, $\frac{m_1+m_2}{2\cos\theta/2}$, $\frac{m_1+m_2}{2\cos\theta/2}$ c) $\frac{l_1-l_2}{2\sin\theta/2}$, $\frac{m_1-m_2}{2\sin\theta/2}$, $\frac{m_1-m_2}{2\sin\theta/2}$ d) $\frac{l_1 - l_2}{2\cos\theta/2}$, $\frac{m_1 - m_2}{2\cos\theta/2}$, $\frac{m_1 - n_2}{2\cos\theta/2}$

16. The direction ratios of the normal to the plane passing through the points (1, -2, 3), (-1, 2, -1) and parallel to the line $\frac{x-2}{2} = \frac{y+1}{3} = \frac{z}{4}$ are proportional to d) 2, 0, -1a) 2, 3, 4 b) 4, 0, 7 c) -2, 0, -1

17. The position vector of a point at a distance of $3\sqrt{11}$ units from $\hat{i} - \hat{j} + 2\hat{k}$ on a line passing through the points $\hat{i} - \hat{j} + 2\hat{k}$ and $3\hat{i} + \hat{j} + \hat{k}$ is b) $-8\hat{i} - 4\hat{j} - \hat{k}$ c) $8\hat{i} + 4\hat{j} + \hat{k}$ d) $-10\hat{\imath} - 2\hat{\jmath} - 5\hat{k}$ a) $10\hat{i} + 2\hat{j} - 5\hat{k}$

18. The centre and radius of the sphere $x^2 + y^2 + z^2 + 3x - 4z + 1 = 0$ are a) $\left(-\frac{3}{2}, 0, -2\right), \frac{\sqrt{21}}{2}$ b) $\left(\frac{3}{2}, 0, 2\right), \sqrt{21}$ c) $\left(-\frac{3}{2}, 0, 2\right) \cdot \frac{\sqrt{21}}{2}$ d) $\left(-\frac{3}{2}, 2, 0\right), \frac{21}{2}$

19. The direction cosines of the line 6x - 2 = 3y + 1 = 2z - 2 are b) $\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$ a) $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$ c) 1, 2, 3 d) None of these

20. The cartesian equation of the plane perpendicular to the line $\frac{x-1}{2} = \frac{y-3}{-1} = \frac{z-4}{2}$ and passing through the origin is

a) 2x - y + 2z - 7 = 0 b) 2x + y + 2z = 0 c) 2x - y + 2z = 0 d) 2x - y - z = 0

55 SMARTLEARN COACHING