

Class: XIIth Date:

Solutio

Subject : PHYSICS

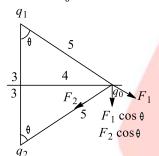
DPP No.:1

Topic :- Electric charges and fields

Here,
$$q = \pm 6.0$$
nC $= \pm 6.0 \times 10^{-9}$ C

$$2 a = 6 \text{ cm} = 6 \times 10^{-2} \text{m}$$

r = 4 cm(on equatorial line)


$$= 4 \times 10^{-2} \text{m}$$

$$q_0 = 2 \text{ nC}$$

$$= 2 \times 10^{-9} C, F = ?$$

$$F = F_1 \cos \theta + F_2 \cos \theta$$

$$=2\times\frac{1}{4\pi\varepsilon_0}\frac{qq_0}{r^2}\cos\theta$$

$$= 2 \times 9 \times 10^{9} \times \frac{6 \times 10^{-9} \times 2 \times 10^{-9}}{(5 \times 10^{-2})^{2}} \times \frac{3}{5}$$

$$= 5.18 \times 10^{-5} \text{N}$$

$$\vec{F} = -51.8$$
ĵµN

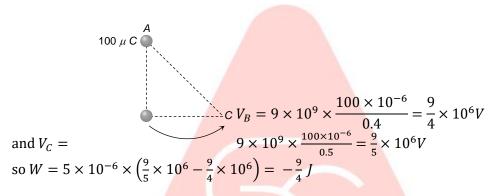
(a)

The electric intensity outside a charged sphere.

$$E = \frac{\sigma R^2}{\varepsilon_0 r^2}$$

3 **(d)**

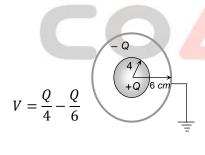
Force acting on the charged particle = $q\vec{E}$ Work done in moving a distance S,


$$W = q\vec{E}.\vec{S} = (qE) \times S \times \cos\theta$$

$$10J = (0.5 C) \times E \times 2\cos 60^{\circ}$$

$$\Rightarrow E = 10 \times 2 = 20 NC^{-1} = 20 Vm^{-1}$$

$$\frac{\sigma_{small}}{\sigma_{Big}} = \frac{q}{Q} \times \frac{R^2}{r^2} = \frac{q}{(nq)} \times \frac{\left(n^{1/3}r\right)^2}{r^2} = n^{-1/3} = (64)^{-1/3} = \frac{1}{4}$$


Work done in displacing charge of $5\mu C$ from B to C is $W = 5 \times 10^{-6} (V_C - V_B)$ where

Here,
$$\theta = 60^{\circ}$$
, $E = 10^{5}NC^{-1}$
 $\tau = 8\sqrt{3}$ Nm, $q = ?$, $2a = 2$ cm $= 2 \times 10^{-2}$ m
From $\tau = pE \sin \theta = q(2a) E \sin \theta$
 $q = \frac{\tau}{2aE \sin \theta} = \frac{8\sqrt{3}}{2 \times 10^{-2} \times 10^{5} \times \sin 60^{\circ}}$
 $= \frac{8\sqrt{3}}{2 \times 10^{3} \times \sqrt{3}/2}$
 $q = 8 \times 10^{-3}$ C

7 (d

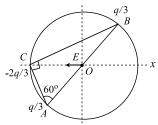
Suppose charge on inner sphere is +Q as shown. Potential on inner sphere

$$\Rightarrow 3 = Q\left(\frac{1}{4} - \frac{1}{6}\right) \Rightarrow Q = 36 \text{ e.s. } u$$

Solid angle,
$$\Omega = \frac{A}{r^2}$$

$$= \frac{\pi R^2}{r^2} \Rightarrow \frac{\pi \times (1)^2}{10^6} \Rightarrow 0.00018^\circ$$

$$F = \frac{q_{1q_2}}{4\pi\epsilon_0 r^2} = \frac{q_{1(q_1 - q_2)}}{4\pi\epsilon_0 r^2}$$


$$\therefore F \text{ will be maximum, if}$$

$$\frac{dF}{dq_1} = 0$$

$$\dot{x} q_1 = 0 \text{ or } q_1 = q/2 \text{ or } q_1/q = 0.5$$

$$E = \frac{V}{d} = \frac{30 - (-10)}{(2 \times 10^{-2})} = 2000 \, V/m$$

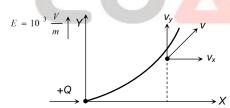
Net electric field due to both charges q/3, will get cancelled. Electric field due to $\left(\frac{-2q}{3}\right)$ will be directed in -ve axis

$$E = \frac{k\left(\frac{2q}{3}\right)}{R^2} \Rightarrow E = \frac{q}{6\pi\varepsilon_0 R^2}$$

P.E. of system =
$$\frac{K(\frac{q}{3})^2}{2R} + \frac{K_{\frac{q}{3}}(-\frac{2q}{3})}{2R\sin 60^{\circ}} + \frac{K_{\frac{q}{3}}(-\frac{2q}{3})}{2R\cos 60^{\circ}}$$

P.E. of system $\neq 0$

Force between B and C


Force between B and C
$$F = \frac{K\left(\frac{2q}{3}\right)\left(\frac{q}{3}\right)}{(2R\sin 60^{\circ})^{2}} = \frac{4 \times 2Kq^{2}}{9 \times 4 \times 3R^{2}} = \frac{2q^{2}}{9 \times 3 \times 4\pi\varepsilon_{0}R^{2}}$$
(attractive) =
$$\frac{1}{54\pi} \frac{q^{2}}{\pi \epsilon_{0} R^{2}}$$

$$(attractive) = \frac{1}{54\pi} \frac{q^2}{\pi \epsilon_0 R^2}$$

Potential at O, $V = \frac{K\left(\frac{q}{3} + \frac{q}{3} - \frac{2q}{3}\right)}{R} = 0$

12 (c)

Body moves along the parabolic path

For vertical motion : By using v = u + at

$$\Rightarrow v_y = 0 + \frac{QE}{m} \cdot t = \frac{10^{-6} \times 10^3}{10^{-3}} \times 10 = 10m/\text{sec}$$

For horizontal motion – It's horizontal velocity remains the same i. e. after 10 sec, horizontal velocity of body $v_x = 10m/sec$

Velocity after
$$10 \sec v = \sqrt{v_x^2 + v_y^2 = 10\sqrt{2}} \ m/sec$$

13 (b)

Capacitance of a cylindrical capacitor = $\frac{2\pi\varepsilon_0 L}{\ln{(b/a)}}$

Energy stored in the capacitor
$$\frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}\frac{Q^2\ln{(b-a)}}{2\pi\varepsilon_0 L} = [\text{const}]\frac{Q^2}{L}$$

If the charge is doubled and length is doubled,

$$[const] \frac{Q'^2}{L'} = \frac{4}{2} \left(\frac{Q^2}{L}\right) = 2$$
 times the energy

14

Electric field

$$E = -\frac{d\phi}{dt} = -2ar$$

By Gauss's theorem

$$E(4\pi r^2) = \frac{q}{\varepsilon_0}$$

$$q = -8\pi\varepsilon_0 a r^2$$

$$E(4\pi r^2) = \frac{q}{\varepsilon_0}$$

$$q = -8\pi\varepsilon_0 a r^2$$

$$\rho = \frac{dq}{dV} = \frac{dq}{dr} \times \frac{dr}{dV}$$

$$= (-24\pi\varepsilon_0 a r^2) \times \frac{1}{4\pi r^2}$$

$$\rho = -6\varepsilon_0 a$$

15

Because metals are good conductor

16

$$E = -\frac{dV}{dx} = -\frac{d}{dx}(5x^2 + 10x - 9) = -10x - 10$$

$$\therefore (E)_{x=1} = -10 \times 1 - 10 = -20V/m$$

Work done
$$W = Q(V_B - V_A) \Rightarrow (V_B - V_A) = \frac{W}{Q}$$

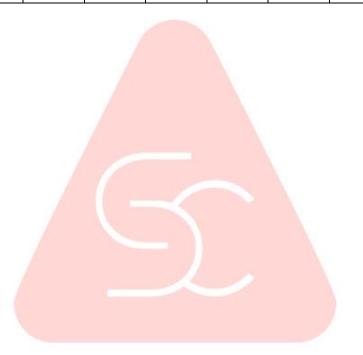
= $\frac{10 \times 10^{-3}}{5 \times 10^{-6}} J/C = 2 kV$

$$= \frac{10 \times 10^{-3}}{5 \times 10^{-6}} J/C = 2 kV$$

18 (b)

The given arrangement is equivalent to the parallel combination of three identical capacitors. Hence equivalent capacitance = $3C = 3\frac{\varepsilon_0 A}{d}$

19 (c)


Inside a conducting body, potential is same everywhere and equals to the potential of it's surface

20

$$c \propto r \Rightarrow C = 4\pi\varepsilon_0 R$$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	A	A	D	D	D	C	D	C	В	A
Q.	11	12	13	14	15	16	17	18	19	20
A.	C	C	В	C	В	A	A	В	C	C

SMARTLEARN COACHING