

(b)

9

The electric field induced by changing magnetic field depends upon the rate of change of magnetic flux, hence it is non-conservative

10

11

(b) $U = \frac{1}{2} \times \frac{1}{2} \varepsilon_0 E^2 = \frac{1}{2} \times \frac{1}{2} \times 8.85 \times 10^{-12} \times (2)^2$ = 8.85 × 10⁻¹² Jm⁻³

(c) Total power=solar constant × area

 $= 10^4 \times (10 \times 10) = 10^6 \text{ W}$

12 (b)

Infrared radiations are detected by pyrometer

14

(d)

The equation of electric field occurring in *Y*-direction

$$E_y = 66 \cos 2\pi \times 10^{11} \left(t - \frac{x}{c} \right)$$

Therefore, for the magnetic field in Z-direction

$$B_{z} = \frac{E_{y}}{c}$$

$$= \left(\frac{66}{3 \times 10^{8}}\right) \cos 2\pi \times 10^{11} \left(t - \frac{x}{c}\right)$$

$$= 22 \times 10^{-8} \cos 2\pi \times 10^{11} \left(t - \frac{x}{c}\right)$$

$$= 22 \times 10^{-7} \cos 2\pi \times 10^{11} \left(t - \frac{x}{c}\right)$$

17

(b)

In an electromagnetic wave, the average energy density of magnetic field μ_B = average energy density of electric filed $v_E = \frac{1}{4} \varepsilon_0 E_0^2$

$$= \frac{1}{4} \times (8.85 \times 10^{-12}) \times 1^{2}$$
$$= 2.21 \times 10^{-12} \,\mathrm{Im}^{-3}$$

18

(c) In vacuum, $\varepsilon_0 = 1$ In medium, $\varepsilon = 4$ So, refractive index

 $\mu = \sqrt{\varepsilon/\varepsilon_0} = \sqrt{4/1} = 2$ wavelength $\lambda' = \frac{\lambda}{\mu} = \frac{\lambda}{2}$ and wave velocity $v = \frac{c}{\mu} = \frac{c}{2}$

Hence, it is clear that wavelength and velocity will become half but frequency remains uncharged when the wave is passing through any medium.

19

$$I = \frac{1}{2} \varepsilon_0 E_0^2 c$$

or $E_2 = \sqrt{\frac{2I}{\varepsilon_0 c}}$

(d)

=

(c)

$$\sqrt{\frac{2 \times 4}{(8.85 \times 10^{-12}) \times (3 \times 10^8)}} = 55.5 \text{ NC}^{-1}$$

20

Intensity
$$I = \frac{\text{pressure}}{\text{area}} = \frac{p}{4\pi r^2}$$

=average energy density × velocity
 $= \frac{1}{2} \varepsilon_0 E_0^2 c$
 $\therefore E_0 = \sqrt{\frac{2P}{4\pi \varepsilon_0 r^2 c}} = \sqrt{\frac{P}{2\pi \varepsilon_0 r^2 c}}$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	А	А	A	С	Α	А	В	С	В	В
					14					
Q.	11	12	13	14	15	16	17	18	19	20
А.	C	В	C	D	В	С	В	C	D	С

SMARTLEARN COACHING

Smart DPPs