

7 **(a)**

=

$$
7\quad
$$

$$
\beta = \frac{\lambda D}{d} \Rightarrow \beta \propto \lambda
$$

8 **(d)**

When two waves of same frenquency, same wavelength and same velocity moves in the same direction. Their superposition results in the interference. The two beams should be monochromatic.

9 **(d)**

Let n th minima of 400 nm coincides with m th minima of 560 nm then

$$
(2n-1)400 = (2m-1)560 \Rightarrow \frac{2n-1}{2m-1} = \frac{7}{5} = \frac{14}{10} = \frac{21}{15}
$$

i.e., 4th minima of 400 nm coincides with 3rd minima of 560 nm

The location of this minima is

$$
\frac{7(1000)(400 \times 10^{-6})}{2} = 14 \text{ mm}
$$

$$
2\times 0.1
$$

Next, 11th minima of 400*nm* will co<mark>incide with 8th m</mark>inima of 560 *nm* Location of this minima is

$$
=\frac{21(1000)(400\times10^{-6})}{2\times0.1}=42
$$
mm

∴ Required distance = 28 mm

10 **(b)**

$$
\frac{I_{\text{max}}}{I_{\text{min}}} = \frac{4}{1} \frac{(a_1 + a_2)^2}{(a_1 - a_2)^2}
$$
\nOr

\n
$$
\frac{a_1 + a_2}{a_1 - a_2} = \frac{2}{1}
$$
\nOr

\n
$$
a_1 + a_2 = 2a_1 - 2a_2
$$
\nOr

\n
$$
a_1 = 3a_2
$$
\n∴

\n
$$
\frac{I_1}{I_2} = \frac{a_1^2}{a_2^2} = \frac{(3a_2)^2}{a_2^2} = \frac{9}{1}
$$
\n∴

\n
$$
\frac{a_1}{a_2} = \frac{3}{1}
$$

11 **(c)**

Wave theory of light is given by Huygen

12 **(c)**

Interference fringes are bands on screen XY running parallel to the length of slits. Therefore, the locus of fringes is represented correctly by W_3W_4 .

13 **(b)**

The angular distance (θ) is given by

The angular distance
$$
(\theta)
$$
 is given by
\n
$$
\theta = \frac{\lambda}{d}
$$
\n
$$
\theta = 2^{\circ} = \frac{\pi}{180} \times 2, \lambda = 6980 \text{ Å}
$$
\n
$$
= 6980 \times 10^{-10} \text{ m}
$$
\n
$$
\Rightarrow d = \frac{\lambda}{\theta} = \frac{6980 \times 10^{-10} \times 180}{3.14 \times 2}
$$
\n
$$
= 1.89 \times 10^{-5} \text{ mm}
$$
\n
$$
\Rightarrow d = 2 \times 10^{-5} \text{ mm}
$$
\n
$$
\theta = \frac{\lambda D}{d} \Rightarrow (0.06 \times 10^{-2}) = \frac{\lambda \times 1}{1 \times 10^{-3}} \Rightarrow \lambda = 6000 \text{ Å}
$$
\n
$$
\text{(c)} \text{Given, } I_1 = I \text{ and } I_2 = 9I
$$

Maximum intensity = $(\sqrt{I_1} + \sqrt{I_2})^2$ $=\left(\sqrt{I} + \sqrt{9I}\right)^2 = 16I$

Minimum intensity

$$
= \left(\sqrt{I_1} - \sqrt{I_2}\right)^2 = \left(\sqrt{I} - \sqrt{9I}\right)^2 = 4I
$$
\n(a)

18 **(a)**

The diffraction pattern of light waves of wavelength (λ) diffracted by a single, long narrow slit of width is shown. For first minimum.

When *e* is decreased for same wavelength, sin θ increases, hence θ increases. Thus, width of central maxima will increase.

20 **(d)** Intensity of EM wave is given by

$$
I = \frac{P}{4\pi R^2} = v_{av} \cdot c = \frac{1}{2} \varepsilon_0 E_0^2 \times c
$$

800

$$
\Rightarrow E_0 = \sqrt{\frac{2\pi R^2 \varepsilon_0 c}{2 \times 3.14 \times (4)}}
$$

$$
= \sqrt{\frac{2 \times 3.14 \times (4)}{15}}
$$

 $2 \times 3.14 \times (4)^2 \times 8.85 \times 10^{-12} \times 3 \times 10^8$ V $= 54.77$ \overline{m} ING **IAC**

Smart DPPs

