

(a)

=

$$\beta = \frac{\lambda D}{d} \Rightarrow \beta \propto \lambda$$
(d)

8

When two waves of same frequency, same wavelength and same velocity moves in the same direction. Their superposition results in the interference. The two beams should be monochromatic.

9 (d)

Let *n*th minima of 400 nm coincides with *m*th minima of 560 nm then

$$(2n-1)400 = (2m-1)560 \Rightarrow \frac{2n-1}{2m-1} = \frac{7}{5} = \frac{14}{10} = \frac{21}{15}$$

i.e., 4th minima of 400 *nm* coincides with 3rd minima of 560 *nm* The location of this minima is

 $7(1000)(400 \times 10^{-6})$

$$\frac{7(1000)(400 \times 10^{-4})}{2 \times 0.1} = 14 \ mm$$

Next, 11th minima of 400*nm* will coincide with 8th minima of 560 *nm* Location of this minima is

$$=\frac{21(1000)(400\times10^{-6})}{2\times01}=42 \text{ mm}$$

 \therefore Required distance = 28 mm (b)

10

$$\frac{l_{\max}}{l_{\min}} = \frac{4}{1} \frac{(a_1 + a_2)^2}{(a_1 - a_2)^2}$$

Or $\frac{a_1 + a_2}{a_1 - a_2} = \frac{2}{1}$
Or $a_1 + a_2 = 2a_1 - 2a_2$
Or $a_1 = 3a_2$
 $\therefore \quad \frac{l_1}{l_2} = \frac{a_1^2}{a_2^2} = \frac{(3a_2)^2}{a_2^2} = \frac{9}{1}$
 $\therefore \qquad \frac{a_1}{a_2} = \frac{3}{1}$

11 **(c)**

Wave theory of light is given by Huygen

12

(c)

(b)

Interference fringes are bands on screen XY running parallel to the length of slits. Therefore, the locus of fringes is represented correctly by W_3W_4 .

13

The angular distance (θ) is given by

$$\theta = \frac{\lambda}{d}$$

$$\theta = 2^{\circ} = \frac{\pi}{180} \times 2, \lambda = 6980 \text{ Å}$$

$$= 6980 \times 10^{-10} \text{ m}$$

$$\Rightarrow d = \frac{\lambda}{\theta} = \frac{6980 \times 10^{-10} \times 180}{3.14 \times 2}$$

$$= 1.89 \times 10^{-5} \text{ mm}$$

$$\Rightarrow d = 2 \times 10^{-5} \text{ mm}$$
(a)

16

$$\beta = \frac{\lambda D}{d} \Rightarrow (0.06 \times 10^{-2}) = \frac{\lambda \times 1}{1 \times 10^{-3}} \Rightarrow \lambda = 6000\text{\AA}$$
(c)

Given, $I_1 = I$ and $I_2 = 9I$

NG

Maximum intensity = $(\sqrt{I_1} + \sqrt{I_2})^2$ = $(\sqrt{I} + \sqrt{9I})^2 = 16I$

Minimum intensity

 $= \left(\sqrt{I_1} - \sqrt{I_2}\right)^2 = \left(\sqrt{I} - \sqrt{9I}\right)^2 = 4I$ (a)

18

The diffraction pattern of light waves of wavelength (λ) diffracted by a single, long narrow slit of width is shown. For first minimum.

When *e* is decreased for same wavelength, $\sin \theta$ increases, hence θ increases. Thus, width of central maxima will increase.

20

(d) Intensity of EM wave is given by

Ι

$$I = \frac{P}{4\pi R^2} = v_{av} \cdot c = \frac{1}{2} \varepsilon_0 E_0^2 \times E_0 = \sqrt{\frac{P}{2\pi R^2}}$$

С

800

$$\varepsilon_0 = \sqrt{2\pi R^2 \varepsilon_0 c}$$

$$= \sqrt{\frac{800}{2 \times 3.14 \times (4)^2 \times 8.85 \times 10^{-12} \times 3 \times 10^8}}$$

= 54.77 $\frac{V}{m}$

п ING

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
А.	D	Α	С	А	Α	В	А	D	D	В	
Q.	11	12	13	14	15	16	17	18	19	20	

Smart DPPs

Α.	С	С	В	В	Α	С	D	А	Α	D

