

CLASS: XIIth DATE:

SOLUTIONS

SUBJECT: MATHS

DPP NO.:1

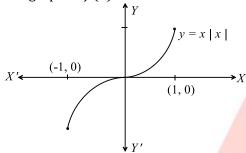
Topic:-RELATIONS AND FUNCTIONS

(a)

We have.

 $f(x) = x|x| = \begin{cases} x^2, & 0 \le x \le 1 \\ -x^2, & -1 \le x < \end{cases}$ $-1 \le x < 0$

The graph of f(x) is as shown below. Clearly, it is a bijection



(b)

Foe domain of given function

$$-1 \le \log_2 \frac{x^2}{2} \le 1$$

$$\Rightarrow 2^{-1} \le \frac{x^2}{2} \le 2 \Rightarrow 1 \le x^2 \le 4$$

$$\Rightarrow |x| \le \frac{1}{2} \le 2 \Rightarrow 1 \le x$$

$$\Rightarrow |x| \le 2 \text{ and } |x| \ge 1$$

$$\Rightarrow x \in [-2, 2] - (-1, 1)$$

(c)

Given,
$$f(x) = ax + b$$
, $g(x) = cx + d$

$$f\{g(x)\} = g\{f(x)\}$$

$$\Rightarrow f(cx+d) = g(ax+b)$$

$$\Rightarrow f(cx+d) = g(ax+b)$$

\Rightarrow a(cx+d) + b = c(ax+b) + d

$$\Rightarrow ad + b = bc + d$$

$$\Rightarrow \qquad f(d) = g(b)$$

4

Since $\phi(x) = \sin^4 x + \cos^4 x$ is periodic with period $\pi/2$

$$\therefore f(x) = \sin^4 3x + \cos^4 3x \text{ is periodic with period } \frac{1}{3} \left(\frac{\pi}{2} \right) = \frac{\pi}{6}$$

We have,

$$f(x) = \log\left(\frac{1+x}{1-x}\right)$$
 and $g(x) = \frac{3x+x^3}{1+3x^2}$

$$\therefore fog(x) = f(g(x))$$

$$\Rightarrow fog(x) = f\left(\frac{3x + x^3}{1 + 3x^2}\right) = \log\left(\frac{1 + \frac{3x + x^3}{1 + 3x^2}}{1 - \frac{3x + x^3}{1 + 3x^2}}\right) = \log\left\{\frac{(1 + x)^3}{(1 - x)^3}\right\}$$

$$\Rightarrow fog(x) = \log\left(\frac{1+x}{1-x}\right)^3 = 3\log\left(\frac{1+x}{1-x}\right) = 3f(x)$$

6 **(b)**

For choice (a), we have

$$f(x) = f(y); x, y \in [-1, \infty)$$

$$\Rightarrow$$
 $|x + 1| = |y + 1| \Rightarrow x + 1 = y + 1 \Rightarrow x = y$

So, *f* is an injection

For choice (b), we obtain

$$g(2) = \frac{5}{2}$$
 and $g(\frac{1}{2}) = \frac{5}{2}$

So, g(x) is not injective

It can be easily seen that the functions in choices in options (c) and (d) are injective maps

7 (b

Given,
$$f(x) = x - [x]$$
, $g(x) = [x]$ for $x \in R$.

$$f(g(x)) = f([x])$$

$$= [x] - [x]$$

$$= 0$$

8 (a)

We have,

$$f(x) = \sqrt{\frac{\log_{0.3}|x - 2|}{|x|}}$$

We observe that f(x) assumes real values, if

$$\frac{\log_{0.3}|x-2|}{|x|} \ge 0 \text{ and } |x-2| > 0$$

$$\Rightarrow \log_{0.3}|x-2| \ge 0$$
 and $x \ne 0, 2$

$$\Rightarrow |x-2| \le 1$$
 and $x \ne 0, 2$

$$\Rightarrow x \in [1,3] \text{ and } x \neq 2 \Rightarrow x \in [1,2) \cup (2,3]$$

9 **(d)**

Since $g(x) = 3 \sin x$ is a many-one function. Therefore, $f(x) - 3 \sin x$ is many-one

Also,
$$-1 \le \sin x \le 1$$

$$\Rightarrow -3 \le -3 \sin x + 3$$

$$\Rightarrow 2 \le 5 - 3\sin x \le 8$$

$$\Rightarrow 2 \le f(x) \le 8 \Rightarrow \text{Range of } f(x) = [2, 8] \ne R$$

So, f(x) is not onto

Hence, f(x) is neither one-one nor onto

10 (a)

We have,

$$f(x + 2y, x - 2y) = xy$$
(i)

Let
$$x + 2y = u$$
 and $x - 2y = v$. Then,

$$x = \frac{u + v}{2}$$
 and $y = \frac{u - v}{4}$

Substituting the values of x and y in (i), we obtain

$$f(u,v) = \frac{u^2 - v^2}{2}$$
 and $f(x,y) = \frac{x^2 - y^2}{8}$

11 (c

Given,
$$f(x) = y = (1 - x)^{1/3}$$

$$\Rightarrow$$
 $y^3 = 1 - x$

$$x = 1 - y^3$$

$$\therefore f^{-1}(x) = 1 - x^3$$

We have,
$$f(x + 2y, x - 2y) = xy$$

Then,
$$x = \frac{u+v}{2}$$
 and $y = \frac{u-v}{4}$

Let x + 2y = u and x - 2y = vThen, $x = \frac{u+v}{2}$ and $y = \frac{u-v}{4}$ Subtracting the values of x and y in Eq. (i), we obtain

$$f(u,v) = \frac{u^2 - v^2}{8} \Rightarrow f(x,y) = \frac{x^2 - y^2}{8}$$

13

Given,
$$f(x) = 5^{x(x-4)}$$
 for $f: [4, \infty[\rightarrow [4, \infty[$

At
$$x = 4$$

$$f(x) = 5^{4(4-4)} = 1$$

Which is not lie in the interval $[4, \infty[$

: Function is not bijective.

Hence, $f^{-1}(x)$ is not defined.

14 (b)

Given,
$$f(x) = x^3 + 3x - 2$$

On differentiating w.r.t. x, we get

$$f'(x) = 3x^2 + 3$$

Put
$$f'(x) = 0 \implies 3x^2 + 3 = 0$$

$$\Rightarrow$$
 $x^2 = -1$

f(x) is either increasing or decreasing.

At
$$x = 2$$
, $f(2) = 2^3 + 3(2) - 2 = 12$

At
$$x = 3$$
, $f(3) = 3^3 + 3(3) - 2 = 34$

∴
$$f(x) \in [12,34]$$

We have,

$$f(\theta) = \sin^2 \theta = \frac{1 - \cos 2\theta}{2}$$

$$\therefore f(\theta) \text{ is periodic with period } \frac{2\pi}{2} = \pi$$

16 (c)

Since, period of $\cos nx = \frac{2\pi}{n}$

And period of $\sin\left(\frac{x}{n}\right) = 2n\pi$

$$\therefore$$
 Period of $\frac{\cos nx}{\sin(\frac{x}{n})}$ is $2n\pi$

$$\Rightarrow 2n\pi = 4\pi \Rightarrow n = 2$$

Given,
$$f(x) = x^3 + 5x + 1$$

Now,
$$f'(x) = 3x^2 + 5 > 0, \forall x \in R$$

$$f(x)$$
 is strictly increasing function.

$$f(x)$$
 is one-one function.

Clearly, f(x) is a continous function and also increasing on R,

$$\lim_{x \to -\infty} f(x) = -\infty \text{ and } \lim_{x \to \infty} = \infty$$

∴ f(x) takes every value between $-\infty$ and ∞

Thus, f(x) is onto function.

The function $f(x) = \frac{1}{2 - \cos 3x}$ is defined for all $x \in R$. Therefore, domain of f(x) is R

Let
$$f(x) = y$$
. Then,

$$\frac{1}{2 - \cos 3x} = y \text{ and } y > 0$$

$$\Rightarrow 2 - \cos 3 x = \frac{1}{y}$$

⇒ cos 3
$$x = \frac{2y-1}{y}$$
 ⇒ $x = \frac{1}{3}\cos^{-1}\left(\frac{2y-1}{y}\right)$
Now,
 $x \in R$, if
 $-1 \le \frac{2y-1}{y} \le 1$
⇒ $-1 \le 2 - \frac{1}{y} \le 1$
⇒ $-3 \le -\frac{1}{y} \le -1$
⇒ $3 \ge \frac{1}{y} \ge 1$ ⇒ $\frac{1}{3} \le y \le 1$ ⇒ $y \in [1/3, 1]$
19 (c)
Given, $A = \{2, 3, 4, 5, ..., 16, 17, 18\}$
And $(a, b) = (c, d)$
∴ Equivalence class of $(3, 2)$ is
 $\{(a, b) \in A \times A: (a, b)R(3, 2)\}$
 $= \{(a, b) \in A \times A: 2a = 3b\}$
 $= \{(a, b) \in A \times A: b = \frac{2}{3}a\}$
 $\{\left(\frac{2}{a, \frac{3}{3}a}\right): a \in A \times A\}$
 $= \{(3, 2), (6, 4), (9, 6), (12, 8), (15, 10), (18, 12)\}$
∴ Number of ordered pairs of the equivalence class=6.
20 (c)
Given function is $f(n) = 8^{-n}P_{n-4}$, $4 \le n \le 6$. It is defined, if $1.8 - n > 0 \Rightarrow n < 8$... (i)
 $2.n - 4 \ge 0 \Rightarrow n \ge 4$... (ii)
 $3.n - 4 \le 8 - n \Rightarrow n \le 6$... (iii)
From Eqs. (i), (ii) and (iii), we get $n = 4, 5, 6$
Hence, range of $f(n) = \{^4P_0, ^3P_1, ^2P_2\} = \{1, 3, 2\}$

SMARTLEARN COACHING

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	A	В	С	С	В	В	В	A	D	A
Q.	11	12	13	14	15	16	17	18	19	20
A.	С	A	D	В	В	С	С	С	С	С

SMARTLEARN COACHING