

CLASS: XIIth DATE:

SOLUTIO

SUBJECT: MATHS

DPP NO.: 1

Topic: - CONTINUITY AND DIFFERENTIABILITY

1 (b)

We have,

$$-\pi/4 < x < \pi/4$$

$$\Rightarrow -1 < \tan x < 1 \Rightarrow 0 \le \tan^2 x < 1 \Rightarrow [\tan^2 x] = 0$$

$$f(x) = [\tan^2 x] = 0 \text{ for all } x \in (-\pi/4, \pi/4)$$

Thus, f(x) is a constant function on $\in (-\pi/4, \pi/4)$

So, it is continuous on $\in (-\pi/4, \pi/4)$ and f'(x) = 0 for all $x \in (-\pi/4, \pi/4)$

2 **(d)**

Since, f(x) is continuous at x = 0

$$\lim_{x \to 0} f(x) = f(0)$$

$$\Rightarrow \lim \frac{-e^x + 2^x}{-e^x + 2^x} = f(0)$$

$$\Rightarrow \lim_{x \to 0} \frac{x}{1} = f(0)$$

$$\Rightarrow \lim_{x \to 0} \frac{-e^x + 2^x \log 2}{1} = f(0) \quad \text{[by L 'Hospital's rule]}$$

$$\Rightarrow f(0) = -1 + \log 2$$

3 **(b)**

Since f(x) is an even function

$$f(-x) = f(x) \text{ for all } x$$

$$\Rightarrow -f'(-x) = f'(x)$$
 for all x

$$\Rightarrow f'(-x) = -f'(x) \text{ for all } x$$

$$\Rightarrow f'(x)$$
 is an odd function

4 (c)

We have,

$$f(x) = \begin{cases} [\cos \pi x], x < 1 \\ |x - 2|, 1 \le x < 2 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} 2 - x, & 1 \le x < 2 \\ -1, & 1/2 < x < 1 \\ 0, & 0 < x \le 1/2 \\ 1, & x = 0 \\ 0, & -1/2 \le x < 0 \\ -1, & -3/2 < x < -1/2 \end{cases}$$

It is evident from the definition that f(x) is discontinuous at x = 1/2

5 **(b)**

We have,

$$\lim_{x \to 2^{-}} f(x) = \lim_{h \to 0} f(2 - h) = \lim_{h \to 0} \frac{|-2 - h + 2|}{\tan^{-1}(-2 - h + 2)}$$

$$\Rightarrow \lim_{x \to 2^{-}} f(x) = \lim_{h \to 0} \frac{h}{\tan^{-1}(-h)} = \lim_{h \to 0} \frac{-h}{\tan^{-1}h} = -1$$
and,

$$\lim_{x \to -2^+} f(x) = \lim_{h \to 0} f(-2+h) = \lim_{h \to 0} \frac{|-2+h+2|}{\tan^{-1}(-2+h+2)}$$

$$\Rightarrow \lim_{x \to -2^+} f(x) = \lim_{h \to 0} \frac{h}{\tan^{-1} h} = 1$$

$$\therefore \lim_{x \to -2^-} f(x) \neq \lim_{x \to -2^+} f(x)$$

So, f(x) is neither continuous nor differentiable at x = -2

From the graph of $f(x) = |\log x|$ it is clear that f(x) is everywhere continuous but not differentiable at $x = \pm 1$, due to sharp edge

7 (b)

We have,

We have,
$$\lim_{x \to a} \frac{xf(a) - a f(x)}{x - a} = \lim_{x \to a} \frac{x f(a) - a f(a) - a (f(x) - f(a))}{x - a}$$

$$\Rightarrow \lim_{x \to a} \frac{x f(a) - a f(x)}{x - a} = \lim_{x \to a} \frac{f(a)(x - a)}{x - a} - a \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

$$\Rightarrow \lim_{x \to a} \frac{x f(a) - a f(x)}{x - a} = f(a) - a f'(a) = 4 - 2a$$
8 (c)

Given, $f(x) = x(\sqrt{x} + \sqrt{x} + 1)$. At x = 0 LHL of \sqrt{x} is not defined, therefore it is not continuous at x = 0Hence, it is not differentiable at x = 0

Here,
$$f'(x) = \begin{cases} 2ax, & b \neq 0, x \leq 1 \\ 2bx + a, & x > 1 \end{cases}$$

Since, f(X) is continuous at x = 1

$$\therefore \lim_{h \to 0} f(x) = \lim_{h \to 1^+} f(x)$$

$$\Rightarrow$$
 $a+b=b+a+c \Rightarrow c=0$

Also, f(x) is differentiable at x = 1

 \therefore (LHD at x = 1)=(RHD at x = 1)

$$\Rightarrow 2a = 2b(1) + a \Rightarrow a = 2b$$

10 (d)

We have,

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \left\{ \frac{x^{2}}{4} - \frac{3x}{4} + \frac{13}{4} \right\} = \frac{1}{4} - \frac{3}{2} + \frac{13}{4} = 2$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1} |x - 3| = 2$$
and, $f(1) = |1 - 3| = 2$

and,
$$f(1) = |1 - 3| = 2$$

$$\therefore \lim_{x \to 1^{-}} f(x) = f(1) = \lim_{x \to 1^{+}} f(x)$$

So,
$$f(x)$$
 is continuous at $x = 1$

We have,

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3} |x - 3| = 0, \lim_{x \to 3^{+}} f(x) = \lim_{x \to 3} |x - 3| = 0$$
and, $f(3) = 0$

and,
$$f(3) = 0$$

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x) = f(3)$$

So,
$$f(x)$$
 is continuous at $x = 3$

Now,

(LHD at
$$x = 1$$
)

$$= \left\{ \frac{d}{dx} \left(\frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4} \right) \right\}_{x=1} = \left\{ \frac{x}{2} - \frac{3}{2} \right\}_{x=1} = \frac{1}{2} - \frac{3}{2} = -1$$

(RHD at
$$x = 1$$
) = $\left\{ \frac{d}{dx} \left(-(x - 3) \right) \right\}_{x=1} = -1$

$$\therefore$$
 (LHD at $x = 1$) = (RHD at $x = 1$)

So, f(x) is differentiable at x = 1

11 (d)

$$f(x) = \begin{cases} \frac{2\sin x - \sin 2x}{2x\cos x}, & \text{if } x \neq 0, \\ a, & \text{if } x = 0 \end{cases}$$

Now,
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{2 \sin x - \sin 2x}{2x \cos x} \quad \left(\frac{0}{0} \text{ form}\right)$$
$$= \lim_{x \to 0} \frac{2 \cos x - 2 \cos 2x}{2x \cos x}$$

$$= \lim_{x \to 0} \frac{2\cos x}{2(\cos x - x\sin x)}$$

$$= \lim_{x \to 0} \frac{2-2}{2(1-0)} = 0$$

Since, f(x) is continuous at x = 0

$$\therefore \quad f(0) = \lim_{x \to 0} f(x)$$

$$\Rightarrow a = 0$$

Given,
$$f(x) = x + |x|$$

$$f(x) = \begin{cases} 2x, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

It is clear from the graph of f(x) is continuous for every value of x

Alternate

Since, x and |x| is continuous for every value of x, so their sum is also continuous for every value of x

Since
$$f(x)$$
 is continuous at $x = 0$

$$\lim_{x \to 0^{-}} f(x) = f(0) = \lim_{x \to 0^{+}} f(x)$$

$$\Rightarrow \lim_{x \to 0} \{1 + |\sin x|\}^{\overline{|\sin x|}} = b = \lim_{x \to 0} e^{\frac{\tan 2x}{\tan 3x}}$$

$$\Rightarrow e^a = b = e^{2/3} \Rightarrow a = \frac{2}{3} \text{ and } a = \log_e b$$

$$\Rightarrow e^a = b = e^{2/3} \Rightarrow a = \frac{2}{3}$$
 and $a = \log_e b$

We have.

$$f(x) = \begin{cases} x^2 + \frac{(x^2/1 + x^2)}{1 - (1/1 + x^2)} = x^2 + 1, x \neq 0 \\ 0, \quad x = 0 \end{cases}$$

Clearly,
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = 1 \neq f(0)$$

So, f(x) is discontinuous at x = 0

15 (d)

LHD=
$$\lim_{h\to 0} \frac{f(0-h)-f(0)}{-h}$$

= $\lim_{h\to 0} \frac{1-1}{-h} = 0$

$$= \lim_{h \to 0} \frac{1 - 1}{-h} = 0$$

RHD=
$$\lim_{h\to 0} \frac{f(0+h)-f(0)}{h}$$

= $\lim_{h\to 0} \frac{1+\sin(0+h)-1}{h} = \lim_{h\to 0} \frac{\sin h}{h} = 1$
 $\Rightarrow \text{LHD}\neq \text{RHD}$
16 (a)

Given,
$$f(x) = x - |x - x^2|$$

At
$$x = 1$$
, $f(1) = 1 - |1 - 1| = 1$

$$\lim_{x \to 1^{-1}} f(x) = \lim_{h \to 0} [(1 - h) - |(1 - h) - (1 - h)^{2}|]$$

$$\lim_{h \to 0} [(1-h) - |h-h^2|] = 1$$

$$\lim_{h \to 0} f(x) = \lim_{h \to 0} [(1+h) - |h|] = 1$$

$$\lim_{x \to 1^+} f(x) = \lim_{h \to 0} [(1+h) - |(1+h) - (1+h)^2|]$$

$$= \lim_{h \to 0} [1 + h - |-h^2 - h|] = 1$$

$$: \lim_{x \to 1^{-1}} f(x) = \lim_{x \to 1^{+}} = f(1)$$

We have,

$$f(x + y + z) = f(x)f(y)f(z) \text{ for all } x, y, z \qquad \dots \text{(i)}$$

$$\Rightarrow f(0) = f(0)f(0)f(0) \quad [Putting x = y = z = 0]$$

$$\Rightarrow f(0)\{1 - f(0)^2\} = 0$$

$$\Rightarrow f(0) = 1$$
 [: $f(0) = 0 \Rightarrow f(x) = 0$ for all x]

Putting z = 0 and y = 2 in (i), we get

$$f(x+2) = f(x)f(2)f(0)$$

$$\Rightarrow f(x+2) = 4f(x)$$
 for all x

$$\Rightarrow f'(2) = 4f'(0)$$
 [Putting $x = 0$]

$$\Rightarrow f'(2) = 4 \times 3 = 12$$

For x > 1, we have

$$f(x) = |\log|x|| = \log x \quad \Rightarrow \quad f'(x) = \frac{1}{x}$$

For x < -1, we have

$$f(x) = |\log|x|| = \log(-x)$$
 \Rightarrow $f'(x) = \frac{1}{x}$

For 0 < x < 1, we have

$$f(x) = |\log|x|| = -\log x \implies f'(x) = \frac{-1}{x}$$

For -1 < x < 0, we have

$$f(x) = -\log(-x) \Rightarrow f'(x) = -\frac{1}{x}$$

Hence,
$$f'(x) = \begin{cases} \frac{1}{x}, & |x| > 1 \\ -\frac{1}{x}, & |x| < 1 \end{cases}$$

Since,
$$\lim_{x \to 0} f(x) = f(0)$$

$$\Rightarrow \lim_{x \to 0} \frac{1 - \cos x}{x^2} = k$$

$$\Rightarrow \lim_{x \to 0} \frac{-(-\sin x)}{2x} = k \quad \text{[using L 'Hospital's rule]}$$

$$\Rightarrow \frac{1}{2} \lim_{x \to 0} \frac{\sin x}{x} = k \quad \Rightarrow \quad k = \frac{1}{2}$$

Given,
$$f(X) = |x - 1| + |x - 2|$$

Smart DPPs

$$= \begin{cases} x - 1 + x - 2, & x \ge 2 \\ x - 1 + 2 - x, & 1 \le x < 2 \\ 1 - x + 2 - x, & x < 1 \end{cases}$$

$$= \begin{cases} 2x - 3, & x \ge 2 \\ 1, & 1 \le x < 2 \\ 3 - 2x, & x < 1 \end{cases}$$

$$f'(x) = \begin{cases} 2, & x > 2 \\ 0, & 1 < x < 2 \\ -1, & x < 1 \end{cases}$$

Hence, except x = 1 and x = 2, f(x) is differentiable everywhere in R

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
Α.	В	D	В	C	В	В	В	С	A	D
				//						
Q.	11	12	13	14	15	16	17	18	19	20
Α.	D	A	A	В	D	A	A	В	С	В
				/			No			

SMARTLEARN COACHING