Class: XIth Date:

Solutio

Subject: MATHS DPP No.: 1

Topic :-Applications of Derivatives

1 (b)

We have,

$$f(x) = x(x-1)^2$$

$$\Rightarrow f''(x) = (x - 1)^2 + 2x(x - 1)$$

$$\Rightarrow f''(x) = (x-1)(3x-1)$$

The changes in the signs of f''(x) are shown in diagram

Clearly, f(x) attains a local maximum at $x = \frac{1}{3}$ and a local minimum at x = 1

$$\therefore \text{ Maximum value of } f(x) = f\left(\frac{1}{3}\right) = \frac{4}{27}$$

2 (a)

Since,
$$2\pi k - \frac{\pi}{2} \le \sin x \le 2\pi k + \frac{\pi}{2}$$

For k = 0

$$-\frac{\pi}{2} < \sin x < \frac{\pi}{2}$$

Which increase from−1 to 1.

Similarly, for other values of k it is increase from -1 to 1.

3

Volume of cone,
$$V = \frac{\pi}{3}r^2h$$

$$\Rightarrow V = \frac{\pi}{3}r^2\sqrt{l^2 - r^2}$$

On differentiating w.r.t. r, we get

$$\frac{dV}{dr} = \frac{\pi}{3} \left[2r\sqrt{l^2 - r^2} + \frac{r^2}{2\sqrt{l^2 - r^2}} (-2r) \right]$$

Put
$$\frac{dV}{dr} = 0$$

$$\Rightarrow 2r\sqrt{(l^2 - r^2)} - \frac{r^3}{\sqrt{l^2 - r^2}} = 0$$

$$\Rightarrow r[2(l^2 - r^2) - r^2] = 0$$

$$\Rightarrow r[2(l^2 - r^2) - r^2] = 0$$

$$\Rightarrow r = \pm l \sqrt{\frac{2}{3}}$$

$$\therefore \text{ At } r = l\sqrt{\frac{2}{3}}, \frac{d^2V}{dr^2} < 0, \text{ maxima}$$

$$h = \sqrt{l^2 - \frac{2}{3}l^2} = \frac{l}{\sqrt{3}}$$

In
$$\triangle ABC$$
, $\tan \theta = \frac{r}{h} = \frac{l\sqrt{\frac{2}{3}}}{\frac{l}{\sqrt{3}}} = \sqrt{2}$

(c) 4

Given that
$$f(x) = \sin x - bx + c$$

$$f'(x) = \cos x - b$$

For decreasing, f'(x) < 0, for all $x \in R$.

$$\Rightarrow \cos x < b \text{ for all } x \in R \Rightarrow b > 1.$$

5

Given,
$$f(x) = 2x^3 + 3x^2 - 12x + 1$$

$$\Rightarrow f'(x) = 6x^2 + 6x - 12$$

For f(x) to be decreasing, f'(x) < 0

$$\Rightarrow 6(x^2 + x - 2) < 0$$

$$\Rightarrow (x+2)(x-1) < 0$$

$$\Rightarrow x \in (-2,1)$$

(a)

We have,

$$f(x) = 2x + \cot^{-1}x + \log(\sqrt{1+x^2} - x)$$

$$f'(x) = 2 - \frac{1}{1+x^2} + \frac{1}{\sqrt{1+x^2} - x} \left(\frac{x}{\sqrt{1+x^2}} - 1\right)$$

$$\Rightarrow f'(x) = \frac{1+2x^2}{1+x^2} - \frac{1}{\sqrt{1+x^2}}$$

$$\Rightarrow f'(x) = \frac{1+2x^2}{1+x^2} - \frac{1}{\sqrt{1+x^2}}$$

$$\Rightarrow f'(x) = \frac{1+2x^2}{1+x^2} - \frac{\sqrt{(1+x^2)}}{1+x^2}$$

$$\Rightarrow f'(x) = \frac{1+2x^2}{1+x^2} - \frac{\sqrt{(1+x^2)}}{1+x^2}$$

$$\Rightarrow f'(x) = \frac{x^2 + \sqrt{1+x^2}\sqrt{1+x^2} - 1}{1+x^2} > 0 \text{ for all } x$$

Hence, f(x) is an increasing function on $(-\infty, \infty)$ and in particular on $(0, \infty)$

7 (c)

We have,

$$f(x) = 3\cos^2 x + 4\sin^2 x + \cos\frac{x}{2} + \sin\frac{x}{2}$$

$$\Rightarrow f(x) = 4 - \cos^2 x + \cos\frac{x}{2} + \sin\frac{x}{2}$$

$$\Rightarrow f'(x) = \sin 2x - \frac{1}{2} \left(\sin \frac{x}{2} - \cos \frac{x}{2} \right) \quad \dots (i)$$

$$\Rightarrow f'(x) = 2\sin x \cos x - \frac{1}{2} \left(\sin \frac{x}{2} - \cos \frac{x}{2} \right)$$

$$\Rightarrow f'(x) = 2\sin x \left(\sin^2 \frac{x}{2} - \cos^2 \frac{x}{2}\right) + \frac{1}{2} \left(\sin \frac{x}{2} - \cos \frac{x}{2}\right)$$

$$\Rightarrow f'(x) = \left(\cos\frac{x}{2} - \sin\frac{x}{2}\right) \left\{2\sin x \left(\cos\frac{x}{2} + \sin\frac{x}{2}\right) + \frac{1}{2}\right\}$$

$$\Rightarrow f'(x) = \left(\cos\frac{x}{2} - \sin\frac{x}{2}\right) \left\{2\sqrt{2}\sin x \sin\left(\frac{x}{2} + \frac{\pi}{4}\right) + \frac{1}{2}\right\}$$

For local maximum or minimum, we must have

$$f'(x) = 0$$

$$\Rightarrow \cos \frac{x}{2} - \sin \frac{x}{2} = 0$$

$$\Rightarrow \cos\frac{x}{2} = \sin\frac{x}{2} \Rightarrow \tan\frac{x}{2} = 1 \Rightarrow \frac{x}{2} = \frac{\pi}{4} \Rightarrow x = \frac{\pi}{2}$$

$$f''(x) = 2\cos 2x - \frac{1}{4}\left(\cos\frac{x}{2} + \sin\frac{x}{2}\right)$$
 [Using (i)]

$$\Rightarrow f''\left(\frac{\pi}{2}\right) = 2\cos\pi - \frac{1}{4}\left(\cos\frac{\pi}{4} + \sin\frac{\pi}{4}\right) = -2 - \frac{1}{2\sqrt{2}} < 0$$

Thus, f(x) attains a local maximum at $x = \frac{\pi}{2}$

Local maximum value = $f\left(\frac{\pi}{2}\right) = 4 + \frac{2}{\sqrt{2}} = 4 + \sqrt{2}$

8

$$\therefore \quad y = \left(\frac{c^6 - a^2 x^4}{b^2}\right)^{\frac{1}{4}}$$

Let
$$f(x) = xy = \left(\frac{c^6 x^4 - a^2 x^8}{b^2}\right)^{\frac{1}{4}}$$

$$\Rightarrow f'(x) = \frac{1}{4} \left(\frac{c^6 x^4 - a^2 x^8}{b^2} \right)^{-3/4}$$

$$\left(\frac{4x^3c^6}{b^2} - \frac{8x^7a^2}{b^2}\right)$$

Put
$$f'(x) = 0$$

$$\Rightarrow x = \pm \frac{c^{3/2}}{2^{1/4}\sqrt{a}}$$

$$\therefore f\left(\frac{c^{3/2}}{c^{1/4}\sqrt{a}}\right) = \frac{c^3}{\sqrt{2ab}}$$

9 (a)

Let the radius of the circular wave ring by r cm at any time t. Then, $\frac{dr}{dt} = 30$ cm/sec (given)

Let A be the area of the enclosed ring. Then,

$$A = \pi r^2$$

$$\Rightarrow \frac{dA}{dt} = 2\pi r \frac{dr}{dt}$$

$$\Rightarrow \frac{dA}{dt} = 2\pi \times 50 \times \frac{30}{100} \,\mathrm{m^2 sec} = 30\pi^2 \,\mathrm{m^2/sec}$$

10 (b)

We have,

$$x = t \cos t$$
 and $y = t \sin t$

$$\therefore \frac{dx}{dt} = \cos t - t \sin t \text{ and } \frac{dy}{dx} = \sin t + t \cos t$$

At the origin, we have

$$x = 0, y = 0 \Rightarrow t \cos t = 0$$
 and $t \cos t = 0 \Rightarrow t = 0$

The slope of the tangent at t = 0 is

$$\frac{dy}{dx} = \left(\frac{\frac{dy}{dt}}{\frac{dx}{dt}}\right)_{t=0} = \left(\frac{\sin t + t\cos t}{\cos t - t\sin t}\right)_{t=0} = 0$$
So, the equation of the tangent at the origin

So, the equation of the tangent at the origin is

$$t - 0 = 0(x - 0) \Rightarrow y = 0$$

11

Surface area of sphere $S = 4\pi r^2$ and $\frac{dr}{dt} = 2$

$$\therefore \frac{dS}{dt} = 4\pi \times 2r \frac{dr}{dt} = 8\pi r \times 2 = 16\pi r$$

$$\Rightarrow \frac{dS}{dt} \propto r$$

12

Let
$$f(x) = \left(\frac{1}{x}\right)^x = x^{-x} = e^{-x \log x}$$
. Then,
 $f'(x) = -\left(\frac{1}{x}\right)^x (\log x + 1) = -x^{-x} (\log x + 1)$

Now,

$$f'(x) = 0$$

$$\Rightarrow -x^{-x}(\log x + 1) = 0$$

$$\Rightarrow \log x + 1 = 0 \Rightarrow \log x = -1 \Rightarrow x = e^{-1}$$

Clearly, f''(x) < 0 at $x = e^{-1}$

Hence, $f(x) = x^{-x}$ is maximum for $x = e^{-1}$. The maximum value is $e^{1/e}$

13 (c)

Given,
$$f(x) = 2x^3 - 21x^2 + 36x - 30$$

$$\Rightarrow f'(x) = 6x^2 - 42x + 36$$

For maxima or minima, put f'(x) = 0

$$\Rightarrow 6x^2 - 42x + 36 = 0 \Rightarrow x = 6, 1$$

And
$$f''(x) = 12x - 42$$

$$f''(1) = -30$$
 and $f''(6) = 30$

Hence, f(x) has maxima at x = 1 and minima at x = 6

14 (a)

Let *l* be the length of an edge and *V* be the volume of cue at any time *t*.

$$V = t^{3}$$

$$\frac{dV}{dt} = 3l^{2} \frac{dl}{dt}$$

$$= 3 \times 5^{2} \times 10cm^{3}/s$$

$$= 750cm^{3}/s.$$

We have,
$$\frac{dy}{dx} = \frac{-\sin\theta}{1-\cos\theta}$$

Clearly,
$$\frac{dy}{dx} = 0$$
 for $\theta = (2k+1)\pi$

So, the tangent is parallel to x-axis i.e. y = 0

16 (b)

$$5x^5 - 10x^3 + x + 2y + 6 = 0$$
 ...(i)

Differentiating with respect to x, we get

$$25x^4 - 30x^2 + 1 + 2\frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} = -\frac{1}{2}(25x^4 - 30x^2 + 1)$$

$$\Rightarrow \left(\frac{dy}{dx}\right)_{(0,-3)} = -\frac{1}{2}$$

The equation of the normal at (0, -3) is

 $y + 3 = 2(x - 0) \Rightarrow 2x - y - 3 = 0$

Solving (i) and (ii), we obtain the coordinates of their points of intersection as P(0, -3), (1, -1)and (-1, -5)

Hence, the normal at P(0,-3) meets the curve again at (1,-1) and (-1,-5)

17 (b)

We have.

$$\frac{dx}{d\theta} = a\left(-\sin\theta + \sin\theta + \theta\cos\theta\right) = a\theta\cos\theta$$

and,
$$\frac{dy}{d\theta} = a(\cos\theta - \cos\theta + \theta\sin\theta) = a\theta\sin\theta$$

$$\therefore \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \tan\theta \Rightarrow -\frac{1}{\frac{dy}{dx}} = -\cot\theta$$

Hence, the slope of the normal varies as θ

The equation of the normal at any point is

$$y - a(\sin \theta - \theta \cos \theta) = -\cot \theta \left\{ x - a(\cos \theta + \theta \sin \theta) \right\}$$

$$\Rightarrow x \cos \theta + y \sin \theta = a$$

Clearly, it is a line at a constant distance |a| from the origin

18 (d)

$$f(x) = \begin{cases} 3x^2 + 12x - 1, & -1 \le x \le 2\\ 37 - x, & 2 < x \le 3 \end{cases}$$
Clearly, $\lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) = f(2)$

Clearly,
$$\lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) = f(2)$$

So,
$$f(x)$$
 is continuous at $x = 2$

Hence, it is continuous on [-1,3]

Thus, option (b) is correct

We find that

$$f'(x) = 6x + 12 > 0$$
 for all $x \in [-1, 2]$

$$\Rightarrow f(x)$$
 is increasing on $[-1,2]$

Thus, option (a) is correct

Also,

$$f'(x) < 0$$
 for all $x \in (2,3]$

$$\Rightarrow f(x)$$
 is decreasing on (2, 3)

Hence, f(x) is attains the maximum value at x = 2

So, option (c) is correct

19

Given,
$$f(x) = x^3 - 3x^2 + 2x$$

$$\Rightarrow f'(x) = 3x^2 - 6x + 2$$

Now,
$$f(a)=f(0)=0$$

And
$$f(b) = f\left(\frac{1}{2}\right)$$

$$= \frac{1}{2} \left(\frac{1}{2} - 1 \right) \left(\frac{1}{2} - 2 \right) = \frac{3}{8}$$

By Lagrange's Mean Value Theorem

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

$$\Rightarrow \frac{\frac{3}{8} - 0}{\frac{1}{2} - 0} = 3c^2 - 6c + 2$$

$$\Rightarrow 12c^2 - 24x + 5 = 0$$

Smart DPPs

This is a quadratic equation in c.

$$c = \frac{24 \pm \sqrt{576 - 240}}{24}$$
$$= 1 \pm \frac{\sqrt{21}}{6}$$

But c lies between 0 to $\frac{1}{2}$

$$\therefore \text{ we take, } c = 1 - \frac{\sqrt{21}}{6}$$

20 **(a)**

Since, $f(x) = kx - \sin x$ is monotonically increasing for all $x \in R$. Therefore,

$$f'(x) > 0$$
 for all $x \in R$

$$\Rightarrow K - \cos x > 0$$

$$\Rightarrow K > \cos x$$

$$\Rightarrow K > 1$$
 [: maximum value of $\cos x$ is 1]

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	В	A	C	С	С	A	C	С	A	В
		1		1						
Q.	11	12	13	14	15	16	17	18	19	20
A.	C	C	C	A	C	В	В	D	В	A
					_					

SMARTLEARN COACHING