

DATE: DATE: 1DPP NO.:1

SOLUTIO

CLASS : XIIth SUBJECT : MATHS

NS

Topic :-PROBABILITY

1 **(b)**

The total number of ways in which *n* persons can sit at a round table is $(n - 1)!$. So, total number of cases is $(n - 1)!$

Let A and B be two specified persons. Considering these two as one person, the total number of ways in which $n-1$ persons, $n-2$ other persons and one *AB* can sit at a round table is $(n-2)!$. So, favourable number of cases is 2! $(n-2)!$ Thus, the required probability is

$$
p = \frac{2! (n-2)!}{(n-1)!} = \frac{2}{n}
$$

$$
p - (n-1)! - n -
$$

Hence, the required odds are $(1-p)$: p or $(n-3)$: 2

− 1

2 **(b)**

Here $p = 19/20$, $q = 1/20$, $n = 5$, $r = 5$. The required probability is ${}^5C_5\left(\frac{19}{20}\right)$ $\frac{1}{20}$ 5 (1 $\frac{1}{20}$ 6 = (19 $\frac{1}{20}$ 5 3 **(a)**

Let the number of red and blue balls be r and b , respectively. Then, the probability of drawing two red balls is

$$
p_1 = \frac{{}^{r}C_2}{{}^{r+b}C_2} = \frac{r(r-1)}{(r+b)(r+b-1)}
$$

The probability of drawing two blue balls is

$$
p_2 = \frac{{}^{b}C_2}{{}^{r+b}C_2} = \frac{b(b-1)}{(r+b)(r+b-1)}
$$

The probability of drawing one red and one blue ball is

$$
{}^{r}C_1 {}^{b}C_1
$$
 2*br*

 p_3 $\frac{1}{r+b\,C_2} = \frac{1}{(r+b)(r+b-1)}$ By hypothesis, $p_1 = 5p_2$ and $p_3 = 6p_2$ \therefore $r(r - 1) = 5b(b - 1)$ and $2br = 6b(b - 1)$ \Rightarrow $r = 6, b = 3$ 4 **(d)**

Consider two events as follows: A_1 : getting number *i* on first die B_1 : getting a number more than *i* on second die The required probability is

$$
P(A_1 \cap B_1) + P(A_2 \cap B_2) + P(A_3 \cap B_3) + P(A_4 \cap B_4) + P(A_5 \cap B_5) = \sum_{i=1}^{5} P(A_i \cap B_i) = \sum_{i=1}^{5} P(A_i)P(B_i)
$$

[$: A_i, B_i$ are independent] = 1 $\frac{1}{6}$ [P(B₁) + P(B₂)+...+P(B₅)] = 1 $\frac{1}{6}$ 5 $\frac{1}{6}$ + 4 $\frac{1}{6}$ + 3 $\frac{1}{6}$ + 2 $\frac{1}{6}$ + 1 $\frac{1}{6}$ = 5 12 5 **(b)** Let,

 $P(S) = P(1 \text{ or } 2) = 1/3$ $P(F) = P(3 \text{ or } 4 \text{ or } 5 \text{ or } 6) = 2/3$ $P(A \text{ wins}) = P[(S S \text{ or } S F S S \text{ or } S F S S F S S \text{ or } ...)]$ Or $(F S S or F S F S S or ...)$ = 1 9 $1 - \frac{2}{9}$ 9 + 2 27 $1 - \frac{2}{9}$ 9 = 1 $\frac{1}{9}$ \times 9 $\frac{1}{7}$ + 2 $\frac{1}{27}$ \times 9 7 = 1 $\frac{1}{7}$ + 2 $\frac{1}{21}$ = $3 + 2$ $\frac{1}{21}$ = 5 21 $P(A \text{ winning}) =$ 5 $\frac{1}{21}$, $P(B \text{ winning}) =$ 16 21 6 **(a)** Let $E_1 = 1, 4, 7, \dots (n \text{ each})$ $E_2 = 2, 5, 8, \dots$ (*n* each) $E_3 = 3, 6, 9, \dots$ (*n* each) *x* and *y* belong to (E_1,E_2) , (E_2,E_1) or $(E_3,\pmb{E_3}).$ So, the required probability is $n^2 + {}^nC_2$ $\frac{1}{3nC_2}$ = 1 3 7 **(c)**

Let A be the event that 11 is picked and B be the event that sum is even. The number of ways of selecting 11 along with one more-odd number is $n(A \cap B) = {}^{7}C_{1}$

The number of ways of selecting either two even numbers or selecting two odd numbers is $n(B) = 1 + {^{8}}C_2$ $P(A \cap B)$

$$
\therefore P(A/B) = \frac{P(B)}{P(B)}
$$

$$
= \frac{7}{29} = 0.24
$$

18 draws are required for 2 aces means in the first 17 draws, there is one ace and 16 other cards and $18th$ draw produces an ace. So, the required probability is

$$
\frac{{}^{48}C_{16} \times {}^{4}C!}{{}^{52}C_{17}} \times \frac{3}{35} =
$$

9 (c)
Given,

$$
7a - 9b = 0 \Rightarrow b = \frac{7}{9}a
$$

561 15925

Hence, number of pairs (a, b) can be $(9, 7)$; $(18, 14)$; $(27, 21)$; $(36, 28)$. Hence, the required probability is $4/{}^{39}C_2 = 4/741$

$$
10 \qquad \qquad \textbf{(b)}
$$

The total number of cases is $11!/2! \times 2!$ The number of favourable cases is $11!/2! \times 2!)$ – 9! Therefore, required probability is

$$
1 - \frac{9! \times 4}{11!} = \frac{53}{55}
$$

11 (a)

The divisibility of the product of four numbers depends upon the value of the last digit of each number. The last digit of a number can be any one of the 10 digits 0,1, 2, …9. So, the total number of ways of selecting last digits of four numbers is $10 \times 10 \times 10 \times 10 = 10^4$. If the product of the 4 numbers is not divisible by 5 or 10, then the number of choices for the last digit of each number is 8 (excluding 0 or 5). So, favourable number of ways is 8⁴. Therefore, the probability that the product is not divisible by 5 or 10 is $(8/10)^4$. Hence, the required probability is $1 - (8/10)^4 = 369/625$

12 **(c)**

Let $E =$ event when each American man is seated adjacent to his wife and A =event when Indian man is seated adjacent to his wife. Now, $n(A \cap E) = (4!) \times (2!)^5$ Even when each American man is seated adjacent to his wife. Again, $n(E) = (5!) \times (2!)^4$

 $\therefore P$ (\overline{A} $\left(\frac{E}{E}\right)$ = $n(A \cap E)$ $n(E)$ = $(4!) \times (2!)^3$ $\frac{(-1)^{1/2}}{(5!) \times (2!)^4} =$ 2 5 13 **(c)**

Let the probability that a man aged x dies in a year p . Thus the probability that a man aged x does not die in a year = 1 – p. The probability that all n men aged xdo not die in a year is $(1-p)^n$. Therefore, the probability that at least one man dies in a year is $1 - (1-p)^n$. The probability that out of n men, A_1 dies first is $1/n$. Since this event is independent of the event that at least one man dies in a year, hence, the probability that A_1 dies in the year and he is fi<mark>rst one to die i</mark>s $1/n[1-(1-p)^n]$

14 **(b)**

Let us consider the following events

: card shows up black

 B_1 : card with both sides black

 B_2 : card with both sides white

 B_1 : card with one side white and one black

$$
\begin{array}{ccc}\n & B_1 \\
& A \\
& B_3\n\end{array}
$$

$$
P(B_1) = \frac{2}{10}, P(B_2) = \frac{3}{10}, P(B_3) = \frac{5}{10}
$$

$$
P(A/B_1) = 1, P(A/B_2) = 0, P(A/B_3) = \frac{1}{2}
$$

$$
P(B_1/A) = \frac{\frac{2}{10} \times 1}{\frac{2}{10} \times 1 + \frac{3}{10} \times (0) + \frac{5}{10} \times \frac{1}{2}} = \frac{4}{4+5} = \frac{4}{9}
$$

15 **(c)**

Possibilities of getting 9 are (5, 4), (4, 5), (6, 3), (3, 6) $\therefore p =$ 4 $\frac{1}{36}$ = 1 $\frac{1}{9}$ and $q = 1 -$ 1 $\frac{1}{9}$ 8

9 Therefore, the required probability is

$$
{}^{3}C_{2}q^{1}p^{2} = (3)\left(\frac{8}{9}\right)\left(\frac{1}{9}\right)^{2} = \frac{8}{243}
$$

16 **(d)**

The number of ways of arranging n numbers is $n!$ In each order obtained, we must now arrange the digits 1, 2, … k as group and the $n - k$ remaining digits. This can be done in $(n - k + 1)!$ ways. Therefore, the probability for the required event is $(n - k + 1)!/n!$

17 **(a)**

For each toss, there are four choices:

1. A gets head, B gets head

- 2. A gets tail, B gets head
- 3. A gets head, B gets tail
- 4. A gets tail, B gets tail

Thus, exhaustive number of ways is 4^{50} . Out of the four choices listed above, (iv) is not favourable to the required event in a toss. Therefore, favourable number of cases is 3⁵⁰. Hence, the required probability is $(3/4)^{50}$

18 **(c)**

Let a_n be the number5 of strings of *H* and *T* of length *n* with no two adjacent *H*'s. Then $a_1 = 2, a_2 = 3$. Also,

 $a_{n+2} = a_{n+1} + a_n$ (since the string must with T or HT)

So, $a_3 = 5$, $a_4 = 8$, $a_5 = 8 + 5 = 13$

Therefore, the required probability is $13/2^5 = 13/52$

19 **(a)**

We have ratio of the ships A , B and C for arriving safely are 2:5,3:7 and 6:11, respectively. Therefore, the probability of ship A for arriving safely is $2/(2+5)=2/7$

Similarly, for *B* the probability is $3/(3+7)=3/10$ and for *C* the probability is $C = 6/(6 + 11) = 6/17$ Therefore, the probability of all the ships for arriving safely is $(2/7) \times (3/10) \times (6/17)$ 18/595 20 **(a)**

Out of 9 socks, 2 can be drawn in ${}^{9}C_2$ ways. Therefore, the total number of cases is ${}^{9}C_2$. Two socks drawn from the drawer will match if either both are brown or both are blue. Therefore, favourable number of cases is 5C_2 + 4C_2 . Hence, the required probability is

$$
\frac{{}^{5}C_{2} + {}^{4}C_{2}}{{}^{9}C_{2}} = \frac{4}{9}
$$

ANSWER-KEY Q. |1 |2 |3 |4 |5 |6 |7 |8 |9 |10 **A.** |B |B |A |D |B |A |C |C |C |B Q. 11 12 13 14 15 16 17 18 19 20 **A.** $\begin{vmatrix} A \\ A \end{vmatrix}$ $\begin{vmatrix} C \\ C \end{vmatrix}$ $\begin{vmatrix} B \\ C \end{vmatrix}$ $\begin{vmatrix} C \\ D \end{vmatrix}$ $\begin{vmatrix} A \\ A \end{vmatrix}$ $\begin{vmatrix} C \\ A \end{vmatrix}$ $\begin{vmatrix} A \\ A \end{vmatrix}$