

CLASS : XIth SUBJECT : CHEMISTRY Solutio **DATE:** DPP No.: 1 Topic :- THE D-AND F-BLOCK ELEMENTS 1 (c) Many of the *d*-block (transition) elements and their compounds act as catalyst. Catalytic property is probably due to the utilisation of (n-1) *d*-orbitals or formation of interstitial compounds. 2 (a) $2 \text{HgCl}_2 + \text{SnCl}_2 \rightarrow \text{SnCl}_4 + \text{Hg}_2 \text{Cl}_2$ (white) $Hg_2Cl_2 + SnCl_2 \rightarrow SnCl_4 + Hg_2$ (Grey) 3 (b) Mohr salt is $FeSO_4$. $(NH_4)_2SO_4$. $6H_2O_4$ \therefore It is double salt having FeSO₄ and (NH₄)₂SO₄. 4 (a) Mn in MnO_4^- has +7 and Cr in CrO_2Cl_2 has +6 oxidation state, the highest for Mn and Cr respectively. 5 (c) Lanthanides are the 14 elements of IIIB group and sixth period (At. no.=58 to 71) that are filling 4f-subshell of antipenultimate shell from 1 to 14. Actually, they are placed below the Periodic Table in horizontal row as lanthanide series. 6 (a) When the quenched steel is heated to temperature below red hot and then allowed to cool slowly. It becomes soft. This process is known as annealing 7 (d) It is a use of chrome alum. 8 (c) We know that by reducing auric chloride by stannous chloride, the colloidal solution of gold is obtained. It is known as purple of cassius 9 (b) $2CuCl_2 + SO_2 + 2H_2O \rightarrow Cu_2Cl_2 + 2HCl + H_2SO_4$ 10 (d) C, Fe, Mg react with hot water to give H_2 . 11 (b) Tungsten is the highest m.p. metal (3410°C). 12 (d) Mercurous chloride (calomel) is prepared by heating HgCl₂ and Hg in iron vessel. $\mathrm{HgCl}_{2} + \mathrm{Hg} \xrightarrow{\Delta} \mathrm{Hg}_{2}\mathrm{Cl}_{2}$ It can also be prepared by the reduction of mercury (II) chloride by tin (II) chloride in a limited quantity. $2\text{HgCl}_2 + \text{SnCl}_2 \xrightarrow{\Delta} \text{Hg}_2\text{Cl}_2 + \text{SnCl}_4$ 13 (a) It is a fact. 14 (b) $SO_3^{2-} + H_2O \rightarrow SO_4^{2-} + 2H^+ + 2e$

MAHESH SIR'S NOTES - 7798364224

Smart DPPs

 $\mathrm{MnO_4^-} + 8\mathrm{H^+} + 5e \longrightarrow \mathrm{Mn^{2+}} + 4\mathrm{H_2O}.$

15

It is a fact.

(c)

(d)

16

The element having unpaired electron is paramagnetic. More the number of unpaired electrons, more will be paramagnetic character.

Mn $(25)=1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$, $3d^5$ \therefore 5 unpaired electrons Fe $(26)=1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$, $3d^6$ \therefore 4 unpaired electrons Ni $(28)=1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$, $3d^8$ \therefore 2 unpaired electrons Cu $(29)=1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$, $3d^{10}$ \therefore 1 unpaired electrons \therefore Mn has maximum and Cu has least paramagnetic property.

17

It is a reason for the given fact.

18 **(c)**

The cupellation step in Parke's process is used to purify Ag from lead.

19 **(c)**

(b)

It is a fact.

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	C	A	В	A	С	A	D	C	В	D
Q.	11	12	13	14	15	16	17	18	19	20
A.	В	D	A	В	C	D	В	С	C	В
										ļ

COACHING