

Class: XIIth **Subject: CHEMISTRY**

DPP No.: 2 Date:

Topic :- Chemical Kinetics

The velocity constant of a reaction at 290 K was found to be 3.2×10^{-3} at 300 K, it will be

a)
$$6.4 \times 10^{-3}$$

b)
$$1.28 \times 10^{-2}$$

c)
$$9.6 \times 10^{-3}$$

d)
$$3.2 \times 10^{-4}$$

- The term $\frac{-dc}{dt}$ in a rate equation refers to
 - a) The decrease in concentration of the reactant with time
 - b) The concentration of the reactant
 - c) The change in concentration of the reactant
 - d) The velocity constant of the reaction

In a first order reaction the concentration of reactant decreases from 800 mol/dm^6 to 50 mol/dm^6 in 2×10^4 s. The rate constant of reaction in s^{-1} is

a)
$$2 \times 10^4$$

b)
$$3.45 \times 10^{-5}$$

c)
$$1.386 \times 10^{-4}$$

d)
$$2 \times 10^{-4}$$

Consider the chemical reaction,

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

The rate of this reaction can be expressed in terms of time derivative of concentration of $N_2(g)$, $H_2(g)$ and NH₃(g). Identify the correct relationship amongst the rate expressions:

a) Rate =
$$-d[N_2]/dt = -\frac{1}{3}d[H_2]/dt = \frac{1}{2}d[NH_3]/dt$$

b) Rate =
$$-d[N_2]/dt = -3d[H_2]/dt = 2d[NH_3]/dt$$

c) Rate =
$$d[N_2]/dt = \frac{1}{3}d[H_2]/dt = \frac{1}{2}d[NH_3]/dt$$

d) Rate = $-d[N_2]/dt = -d[H_2]/dt = d[NH_3]/dt$

d) Rate =
$$-d[N_2]/dt = -d[H_2]/dt = d[NH_3]/dt$$

5. Rate of reaction can be expressed by following rate expression, rate= $k[A]^2[B]$, if concentration of A is increased by 3 times and concentration of B is increased by 2 times, how many times rate of reaction increases?

- a) 9 times
- b) 27 times
- c) 18 times
- d) 8 times

As the reaction progresses, the rate of reaction

- a) Increases
- c) Remains constant

- b) Decreases
- d) First increases, then decreases

The data for the reaction, $A+B\rightarrow C$

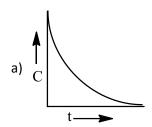
Ex	$[A]_0$	$[B]_0$	Initial rate	
1	0.012	0.035	0.10	
2	0.024	0.070	0.80	
3	0.024	0.035	0.10	
4	0.012	0.070	0.80	

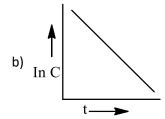
The rate law corresponds to the above data is

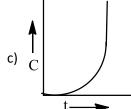
a)
$$rate = k[B]^3$$

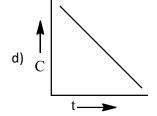
b)
$$rate = k[B]^{4}$$

c)
$$rate = k[A][B]^3$$


d)
$$rate = k [A]^2 [B]^2$$


Smart DPPs


8.	In a reaction, when the concentration of reactant is increased two times, the increase in rate of reaction was four times. Order of reaction is						
	a) Zero	b) 1	c) 2	d) 3			
9.	For the reaction $N_2 + 3H_2 \rightleftharpoons 2NH_3$ The rate of change of concentration for hydrogen is $0.3 \times 10^{-4} Ms^{-1}$ The rates of change of concentration of ammonia is						
	a) -0.2×10^{-4}	b) 0.2×10^{-4}	c) 0.1×10^{-4}	d) 0.3×10^{-4}			
10.	Which of the following st Rate is directly proportion Rate depend upon orient Temperature determines a) Only III c) Only II and III	onal to collision frequent ation of atoms					
11.	$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) + 22$ kcal. The activation energy for the forward reaction is 50 kcal. What is the activation energy for the backward reaction?						
	a) -72 kcal	b) -28 <mark>kcal</mark>	c) +28 kcal	d) +72 kcal			
12.	 According to collision theory: a) Collisions are sufficiently violent b) All collision are responsible for reaction c) All collisions are effective d) Only highly energetic molecules have enough energy to react 						
13.	The rate constant of a firm a) $1.44 \mathrm{s}^{-1}$	st order reaction whose b) $1.44 \times 10^{-3} \text{ s}^{-1}$		d) $0.72 \times 10^{-3} \mathrm{s}^{-1}$			
	5MA	RT	LE	ARN			
14.	 2A → B + C; It would be a zero order reaction when: a) The rate of reaction is proportional to square of conc. of A b) The rate of reaction remains same at any conc. of A c) The rate remains unchanged at any conc. of B and C d) The rate of reaction doubles if conc. of B is increased to double 						
15.	For a reaction $A + 2B \rightarrow C$, rate is given by $r = K[A][B]^2$ The order of reaction is:						
	a) 3	b) 6	c) 5	d) 7			
16.	Rate constant for a reac						
	a) $\frac{1}{\lambda}$	b) $\frac{1n^2}{\lambda}$	c) $\frac{\lambda}{\sqrt{2}}$	d) $\frac{0.693}{\lambda}$			


17. The plot between concentration versus time for a zero order reaction is represented by

SMARTLEARN COACHING

18. For the decomposition of $N_2O_5(g)$, it is given that:

$$2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g);$$

Activation energy E_a

$$N_2O_5(g) \rightarrow 2NO_2(g) + (1/2)O_2(g);$$

Activation energy E'_a

then;

a)
$$E_a = E'_a$$

b)
$$E_a > E'_a$$

c)
$$E_a < E_a'$$

d)
$$E_a = 2E'_a$$

19. During the kinetic study of the reaction $2A + B \rightarrow C + D$ following results were obtained.

Run [A] in M [B] in M Initial rate of

formation of

D in Ms^{-1}

I 0.1 0.1
$$6.0 \times 10^{-3}$$

II 0.3 0.2 7.2×10^{-2}
III 0.3 0.4 2.88×10^{-1}
IV 0.4 0.1 2.40×10^{-2}

On the basis of above data which one is correct:

a)
$$r = k[A]^2[B]$$

b)
$$r = k[A][B]$$

c)
$$r = k[A^2][B]^2$$

d)
$$r = k[A][B]^2$$

- 20. If the reaction rate at a given temperature becomes slower then
 - a) The free energy of activation is higher
 - b) The free energy of activation is lower
 - c) The entropy changes
 - d) The initial concentration of the reactants remains constant

