

Class : XIIth Date : Subject : PHYSICS DPP No. : 2

Topic :-WAVE OPTICS

1.	For a wave propagating	ify the property that is inde	pendent of the others			
	a) Velocity		b) Wavelength			
	c) Frequency		d) All these depend	l on each other		
2.	In Young's double alit ex	xperiment, the seve	enth maximum with wavelength λ_1 is at a distance d_1 and			
	the same maximum with wavelength λ_2 is at distance d_2 . Then $d_1/d_2 =$					
	a) $\frac{\lambda_1}{\lambda_2}$	b) $\frac{\lambda_2}{\lambda_1}$	c) $\frac{\lambda_1^2}{\lambda_2^2}$	d) $\frac{\lambda_2^2}{\lambda_1^2}$		
3	An oil flowing on water	seems coloured du	e to interference. For obser	ving this effect the approximation of the second seco	ate	
5.	thickness of the oil film should be					
	a) 100 Å	b) 10000 Å	c) 1 mm	d) 1 <i>cm</i>		
4.	The wave theory of light w <mark>as given by the second second</mark>					
	a) Maxwell	b) Planck	c) Huygen	d) Young		
_						
5	in Young's double slit experiment, the phase difference between the light waves reaching third bright					

5. In Young's double slit experiment, the phase difference between the light waves reaching third bright fringe from the central fringe will be $(\lambda = 6000 \text{ Å})$ a) Zero b) 2π c) 4π d) 6π

6. Laser beams are used to measure long distance because
a) They are monochromatic
b) They are highly polarized
c) They are coherent
d) They have high degree of parallelism

7. In the far field diffraction pattern of a single slit under polychromatic illumination, the first minimum with the wavelength λ_1 is found to be coincident with the third maximum at λ_2 . So a) $3\lambda_1 = 0.3\lambda_2$ b) $3\lambda_1 = \lambda_2$ c) $\lambda_1 = 3.5\lambda_2$ d) $0.3\lambda_1 = 3\lambda_2$

8. White light is used to illuminate the two slits in a Young's double slit experiment. The separation between slits is *b* and the screen is at a distance d(>>b) from the slits. At a point on the screen directly in front of one of the slits, certain wavelengths are missing, figure. Some of these missing wavelengths are

a)
$$\lambda = \frac{b^2}{d}, \frac{2b^2}{3d}$$
 b) $\lambda = \frac{b^2}{2d}, \frac{3b^2}{2d}$ c) $\lambda = \frac{2b^2}{3d}$ d) $\lambda = \frac{3b^2}{4d}$

9. A beam of light *AO* is incident on a glass slab ($\mu = 1.54$) in a direction as shown in figure. The reflected ray *OB* is passed through a Nicol prism. On viewing through a Nicole prism, we find on rotating the prism that

- a) The intensity is reduced down to zero and remains zero
- b) The intensity reduce<mark>s down some what and rises again</mark>
- c) There is no change in intensity
- d) The intensity gradually reduces to zero and then again increases
- 10. A parallel beam of fast moving electrons is incident normally on a narrow slit. A screen is placed at a large distance from the slit. If the speed of the electrons is increased, which of the following statement is correct?

a) Diffraction pattern is not observed on the screen in the case of electrons

- b) The angular width of the central maximum of the diffraction pattern will increase
- c) The angular width of the central maximum will decrease

d) The angular width of the central maximum will remains the same

- 11. Which of the following radiations has the least wavelength a) γ -rays b) β -rays c) α -rays
- d) X-rays

d) Radio waves

imart D

- 12. Which of the following waves have the maximum wavelength a) *X*-rays b) I.R. rays c) UV rays
- 13. A circular disc is placed in front of a narrow source. When the point of observation is 2 *m* from the disc, then it covers first HPZ. The intensity at this point is *I*. When the point of observation is 25 *cm* from the disc then intensity will be

a) $\left(\frac{R_6}{R_2}\right)^2 I$ b) $\left(\frac{R_7}{R_2}\right)^2 I$ c) $\left(\frac{R_8}{R_2}\right)^2 I$ d) $\left(\frac{R_9}{R_2}\right)^2 I$

2

Smart DPPs

14	A light of wavelength EQ00 Å falls normally on a thin air film. The minimum thickness of the film such							
11.	that the film annears dark in reflected light is							
	a) 2.945 × $10^{-7}m$	b) 3.945 × $10^{-7}m$	c) $4.95 \times 10^{-7} m$	d) 1.945 × $10^{-7}m$				
15.	Polarizing angle for wat	er is 53°4′. If light is incide	ent at this angle on the su	face of water and				
	reflected, the angle of refraction is							
	a) 53°4′	b) 126°56′	c) 36°56′	d) 30°4′				
16.	In Young's double slit experiment, the separation between the slit and the screen increases. The fringe width							
	a) Increases	b) Decreases	c) Remains unchanged	d) None of these				
17.	In which of the following is the interference due to the division of wavefront?							
	a) Young's double slit experiment							
	b) Fresnel's biprism experiment							
	c) Liyod's mirror experiment							
	d) Demonstration colours of thin film							
18.	Air has refractive index 1.0003. The th <mark>ickness of air colum</mark> n, which will have one more wavelength of							
	yellow light (6000Å) than in the sam <mark>e thickness of vacuum</mark> is							
	a) 2 <i>mm</i>	b) 2 <i>cm</i>	c) 2 <i>m</i>	d) 2 <i>km</i>				
19.	A star emitting radiation at a wav <mark>elength of 5000Å is approach</mark> ing earth with a velocity of							
	$1.5 \times 10^6 m/s$. The change in wavelength of the radiation as received on the earth, is							
	a) 25Å	b) Zero	c) 100Å	d) 2.5Å				
20.	In Young's double slit experi <mark>ment w</mark> h <mark>en wavelength used is 6000Å a</mark> nd the screen is 40 <i>cm</i> from the							
	slits, the fringes are 0.012 <i>cm</i> wide. What is the distance between the slits							
	a) 0.024 <i>cm</i>	b) 2.4 <i>cm</i>	c) 0.24 <i>cm</i>	d) 0.2 <i>cm</i>				

SMARTLEARN COACHING