

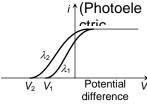
Subject : PHYSICS DPP No. : 2 Class: XIIth Date:

	Topic:	- Dual nature of	f radiation and i	natter
1.	its momentum will be	osition of a particle is equ	al to the de-Broglie wavel	
	a) h/λ	b) $2h/3\lambda$	c) λ/h	d) $3\lambda/2h$
2.		sodium and coppe <mark>r are 2e</mark>	<mark>V an</mark> d 4eV. Which of them	is suitable for a photocell
	with 4000 Å light			
	a) Copper	b) Sodium	c) Both	d) Neither of them
3.	The curve between curr		<mark>rence (V)</mark> for a photo cell v	will be
	a) <i>i</i> ↑	b) <i>i</i> ↑	c) <i>i</i> ↑	d) <i>i</i> ↑
		A V	\bigvee	\bigvee \bigvee \bigvee
4.	What will be the number	r of photons emitted per s	econd by a 10 W sodium y	vapour lamp assuming that
٦.		-	ht? Wavelength of sodium	
	6.63×10^{-34} J-s.	iergy is converted into ing	ne. wavelengen of socialin	
	a) 0.267×10^{18}	b) 0.267×10^{19}	c) 0.267×10^{20}	d) 0.267×10^{17}
5.		# 10 E		h of revolving electron will
	be			O
	a) 2πr	b) πr	s\ 1	d) 1
		· ·	c) $\frac{1}{2\pi r}$	d) $\frac{1}{4\pi r}$
6.	The work function of a metal is			
	a) The energy for the electron to enter into the metal			
	b) The energy for producing X-ray			
	c) The energy is required for an electron to come out from metal surface			
	d) None of these		108 11 11	
7.	If the uncertainty in the position of proton is 6×10^8 m, then the minimum uncertainty in its speed			
	be a) 1 cms ⁻¹	b) 1 ms ⁻¹	c) 1 mms ⁻¹	d) 100 ms ⁻¹
8.				
٥.	The work function for metals A, B and C are respectively 1.92 eV, 2.0 eV and 5 eV. According to Einstein's equation, the metals which will emit photo electrons for a radiation of wavelength 4100 Å is/are			
	a) None of these	b) A only	c) A and B only	d) All the three metals
a			otons has the highest ener	
٦.	a) Infrared	b) Violet	c) Red	d) Blue
10	·-	d cathode rays is depende	,	dy Blue
	a) Only voltage	a camoue rays is depende	b) Only work function	
	c) Both (a) and (b)			on any physical quantity
11.	An electron is accelerated under a potential difference of 182 V. The maximum velocity of electron v			
	(Charge of an electron is 1.6×10^{-19} C and its mass is 9.1×10^{-31} kg)			
	a) 5.65×10^6 m/s	b) $4 \times 10^6 \text{ m/s}$	c) $8 \times 10^6 \text{m/s}$	d) $16 \times 10^6 \text{ m/s}$

- 12. If the voltage of *X*-rays tube is doubled, the intensity of *X*-rays will become
 - a) Half

- b) Unchanged
- c) Double
- d) Four times

- 13. Bragg's law for *X*-rays is
 - a) $d \sin \theta = 2n\lambda$
- b) $2d \sin \theta = n\lambda$
- c) $n \sin \theta = 2\lambda d$
- d) None of these
- 14. An electron of charge 'e' coulomb passes through a potential difference of V volts. Its energy in 'joules' will be
 - a) V/e


b) *eV*

c) e/V

- d) *V*
- 15. When cathode-rays strike a metal target of high melting point with a very high velocity, then which of the following are produced
 - a) α -rays
- b) *X*-rays
- c) Ultraviolet rays
- d) γ -waves
- 16. A photon of energy 8 eV is incident on a metal surface of threshold frequency $1.6 \times 10^{15} Hz$, then the maximum kinetic energy of photoelectrons emitted is $(h = 6.6 \times 10^{-34} Js)$
 - a) 4.8 *eV*
- b) 2.4 *eV*
- c) 1.4 eV
- d) 0.8 eV
- 17. The kinetic energy of an electron is 5 *eV*. Calculate the de-Broglie wavelength associated with it $(h = 6.6 \times 10^{-34} Js, m_e = 9.1 \times 10^{-31} kg)$
 - a) 5.47 Å
- b) 10.9 Å
- c) 2.7 Å
- d) None of these

- 18. Order of q/m ratio of proton, α -particle and electron is
 - a) $e > p > \alpha$
- b) $p > \alpha > e$
- c) $e > \alpha > p$
- d) None of these

19. In the following diagrams if $V_2 > V_1$ then

- a) $\lambda_1 = \sqrt{\lambda_2}$
- b) $\lambda_1 < \lambda_2$
- c) $\lambda_1 = \lambda_2$
- d) $\lambda_1 > \lambda_2$
- 20. Ultraviolet radiations of 6.2 eV falls on an aluminium surface. KE of fastest electron emitted is (work function = 4.2 eV)
 - a) 3.2×10^{-21} J
- b) 3.2×10^{-19} J
- c) 7×10^{-25} J
- d) 9×10^{-32} J

SMARTLEARN COACHING