

Class : XIIth Date : Subject : PHYSICS DPP No. : 2

1.	In which radioactive disintegration, neutron dissociates into proton and electron				
		b) β –emission	c) γ –emission	d) Positron emission	
2.	Using the following da				
	Mass hydrogen atom =				
	Mass of neutron $= 1.0$				
	Mass of nitrogen atom		a nucleus of the nitrogen	$atom (N^{14})$ is alogget	
	a) 56 MeV	b) 98 MeV	ne nucleus of the nitrogen c) 104 MeV	d) 112 MeV	
3.	The ionization energy	,	C) 104 MeV	u) 112 Mev	
5.	a) 9 <i>hcR</i>	b) 6 <i>hcR</i>	c) 2 <i>hcR</i>	d) <i>hcR</i>	
4.				ing energies being E_a , E_b and	
	E_c respectively. Then			0 0 0 u, v	
		b) $E_b + E_c > E_a$	c) $E_b + E_c < E_a$	d) $E_b \cdot E_c = E_a$	
5.	According to Bohr's m	od <mark>el, the radius of the se</mark>	cond orbit of helium atom	is	
	a) 0.53 Å	b) 1.06 Å	c) 2.12 Å	d) 0.265 Å	
6.				in a circular orbit of radius	
	0.529×10^{-10} metre a	at a speed of 2.2 \times 10 ⁶ $m/$	s. The magnitude of its lir	ear momentum in this	
	motion is		24		
1				$1/s$ d) $4.0 \times 10^{-31} kg - m/s$	
7.			build all the hadrons using		
	a) 2 quarks and 3 anti		b) 3 quarks and 2 ant		
0	c) 3 quarks and 3 antiquarks d) 2 quarks and 2 antiquarks Atomic number of a nucleus is Z and atomic mass is M. The number of neutron is				
8.	a) $M - Z$	b) <i>M</i>	c) Z	d) $M + Z$	
9.	-		n which of the following n		
<i>.</i>	photon will be emitted		in which of the following h	laxinium nequency of	
	=		c) $n_1 = 2$ to $n_2 = 6$	d) $n_1 = 6$ to $n_2 = 2$	
10.		now does its mass vary w		J 1 2	
	a) $m \propto V$	b) $m \propto 1/V$	c) $m \propto \sqrt{V}$	d) $m \propto V^2$	
11.	Which of the following	g isotopes is normally fiss	sionable		
	a) ₉₂ U ²³⁸	b) ₉₃ Np ²³⁹	c) ₉₂ U ²³⁵	d) ₂ He ⁴	
12.	Which one of the follo	wing statements about u	ranium is correct		
	 a) ²³⁵U is fissionable by thermal neutrons b) Fast neutrons trigger the fission process in ²³⁵U c) ²³⁵U breaks up into fragments when bombarded by slow neutrons d) ²³⁵U is an unstable isotope and undergoes spontaneous fission 				

Smart DPPs

13.	Outside a nucleus					
	a) Neutron is stable	b) Proton and neutron b	oth are stable			
	c) Neutron is unstable	d) Neither neutron nor p	proton is stable			
14.	4. If m, m_n and m_p are the masses of ${}_Z X^A$ nucleus, neutron and proton respectively, then					
	a) $m < (A - Z)m_n + Zm_p$	b) $m = (A - Z)m_n + Zm_p$				
	c) $m = (A - Z)m_p + Zm_n$	d) $m > (A - Z)m_n + Zm_p$				
15.	. The average binding energy per nucleon is maximum for the nucleus					
	a) $_{2}He^{4}$ b) $_{8}O^{16}$	c) ₂₆ Fe ⁵⁶	d) ₉₂ He ²³⁸			
16.	In the nuclear reaction: $X(n, \alpha)_{3}Li^{7}$ the term X w					
	a) ${}_{5}B^{10}$ b) ${}_{5}B^{9}$	c) ${}_{5}B^{11}$	d) $_2He^4$			
17.	7. 3.8 days is the half-life period of a sample. After how many days, the sample will become 1/8th of the					
	original substance					
	a) 11.4 b) 3.8	c) 3	d) None of these			
18.	The radius of nucleus is					
	a) Proportional to its mass number					
	b) Inversely Proportional to its mass number					
	c) Proportional to the cube root of <mark>its mass number</mark>					
	d) Not related to its mass number					
19. Energy of an electron in n^{th} orbit of hydrogen atom is $\left(k = \frac{1}{4\pi\varepsilon_0}\right)$						
	a) $-\frac{2\pi^2 k^2 m e^4}{n^2 h^2}$ b) $-\frac{4\pi^2 m k e^2}{n^2 h^2}$	c) $-\frac{n^2h^2}{n^2}$	d) $-\frac{n^2h^2}{4\pi^2k ma^2}$			
20		$2\pi k me^4$	$4\pi^2 k me^2$			
	The rest energy of an electron is510 KeVb) 931 KeV	c) 510 <i>MeV</i>	d) 931 <i>MeV</i>			
aj	510 Kev 05 951 Kev	c) 510 MeV	uj 951 mev			

SMARTLEARN COACHING