

Class: XIth

Date:

Subject: Maths

DPP No.:2

Topic :-Application of Derivatives

	·*			*		
1.		$= 0, b = \frac{1}{2}$ and $f(x) = x(x)$	-1)			
	$(x-2)$, then value of c in a) $1 - \frac{\sqrt{15}}{6}$	b) $1 + \sqrt{15}$	c) $_{1}-\frac{\sqrt{21}}{6}$	d) $1 + \sqrt{21}$		
2.	If $f(x) = \frac{1}{4x^2 + 2x + 1}$, then a) 4/3	its maximum value is b) 2/3	c) 1	d) 3/4		
3.	The diameter of a circle is increasing at the rate of 1cm/sec. When its radius is π , the rate of increase of its area is					
	a) π cm ² /sec	b) $2\pi \text{ cm}^2/\text{sec}$	c) π^2 cm ² /sec	d) $2\pi^2$ cm ² /sec ²		
4.	The minimum value of 2 a) 9	(x + 3y, when xy = 6, is) b) 12	c) 8	d) 6		
_				-, -		
5.		nal to the curve $y^4 = ax^3$		d) 4x - 3y = 0		
	a) x + 2y = 3a	b) $3x - 4y + a = 0$	c) $4x + 3y = 7a$	d) $x = 0$		
6.	The value of c in Rolle's theorem when					
	$f(x) = 2x^3 - 5x^2 - 4x + 3, x \in [1/3,3], $ is					
	a) 2	b) -1/3	c) -2	d) ^{2/3}		
7.	Suppose the cubic $x^3 - px + q$ has three distinct real roots where $p > 0$ and $q > 0$. Then,					
8.	which one of the following holds? a) The cubic has maxima at both $\frac{p}{3}$ and $-\frac{p}{3}$ b) The cubic has minima at $\frac{p}{3}$ and maxima at $-\frac{p}{3}$ c) The cubic has minima at $-\frac{p}{3}$ and maxima at $\frac{p}{3}$ d) The cubic has minima at both $\frac{p}{3}$ and $-\frac{p}{3}$ The chord joining the points where $x=p$ and $x=q$ on the curve $y=ax^2+bx+c$ is					
	parallel to the tangent at the point on the curve whose abscissa is					
	a) $\frac{p+q}{2}$	b) $\frac{p-q}{2}$	c) $\frac{pq}{2}$	d) None of these		
9.	n is a positive integer. If the value of c prescribed in Rolle's theorem for the function					

 $f(x) = 2x(x-3)^n$ on the interval [0, 3] is 3/4, then the value of n is

a) 1

b) 2

20. If $f(x) = \sin^6 x + \cos^6 x$, then which one of the following is false?

	Coacimio						
	a) 5	b) 2	c) 3	d) 4			
10.	The shortest distance between the line $y - x = 1$ and the curve $x = y^2$ is						
	a) $\frac{3\sqrt{2}}{8}$	b) $\frac{2\sqrt{3}}{8}$	c) $\frac{3\sqrt{2}}{5}$	d) $\frac{\sqrt{3}}{4}$			
11.	If the distance s covered by a particle in time t is proportional to the cube root of its						
	velocity, then the acceler	ration is	1	E			
	a) A constant	b) $\propto s^3$	c) $\propto \frac{1}{s^3}$	d) $\propto s^5$			
12.	The distance travelled s (in meteres) by a particle in t second is given by, $s = t^3 + 2t^2 + t$. The s the particle after 18 will be						
	a) 8 cm/s	b) 6 cm/s	c) 2 cm/s	d) None of these			
13.	Using differentials, the approximate value of $(627)^{1/4}$ is						
	a) 5.002	b) 5.003	c) 5.005	d) 5.004			
14.	The length of the subtangent at any point (x_1, y_1) on the curve $y = a^x$, $(a > 0)$ is						
	a) $2 \log a$	b) $\frac{1}{\log a}$	c) log a	d) $a^{2x_1}\log a$			
15.	Using differentials the approximate value of $\sqrt{401}$ is						
	a) 20.100	b) 20.025	c) 20.030	d) $^{20.125}$			
16.	A ladder 10 m long rests against a vertical wall with the lower end on the horizontal ground. The lower end of the ladder is pulled along the ground away from the wall at the rate of 3 cm/s. The height of the upper end while it is descending at the rate of 4cm/s, is						
	a) 4√3m	b) 5√3m	c) 6m	d) 8m			
17.	A cubic $f(x)$ vanishes at $x = -2$ and has relative minimum/maximum at $x = -1$ and $x = \frac{1}{3}$ such that $\int_{-1}^{1} f(x) dx = \frac{14}{3}$. Then, $f(x)$ is						
	a) $x^3 + x^2 - x$	b) $x^3 + x^2 - x + 1$	c) $x^3 + x^2 - x + 2$	d) $x^3 + x^2 - x - 2$			
18.	The different between the greatest and least values of the function $f(x) = \cos x \frac{1}{2} \cos 2x - \frac{1}{3} \cos 3x$ is						
	a) $\frac{2}{3}$	b) $\frac{8}{7}$	c) $\frac{3}{8}$	d) $\frac{9}{4}$			
19.	The number of real roots	s of the equation $e^{x-1} + x$	-2 = 0				

c) 3

d) 4

a)
$$f(x) \le 1$$

b)
$$f(x) \le 2$$

c)
$$f(x) > \frac{1}{4}$$

$$d) f(x) \le \frac{1}{8}$$

SMARTLEARN COACHING

3