

CLASS : XIIth DATE :

1. The solution of the

SUBJECT : MATHS DPP NO. : 2

Topic :- DIFFERENTIAL EQUATIONS

differential equation

 $x \frac{dy}{dx} = 2y + x^3 e^x, \text{ where } y = 0 \text{ when } x = 1, \text{ is}$ a) $y = x^3 (e^x - e)$ b) $y = x^3 (e - e^x)$ c) $y = x^2 (e^x - e)$ d) $y = x^2 (e - e^x)$

2. The solution of $(1 + x^2)\frac{dy}{dx} + 2xy - 4x^2 = 0$ is a) $3x(1 + y^2) = 4y^3 + c$ c) $3x(1 - y^2) = 4y^3 + c$ b) $3y(1 + x^2) = 4x^3 + c$ d) $3y(1 + y^2) = 4x^3 + c$

3. A normal is drawn at a P(x, y) of a curve. It meets the *x*-axis at Q. if *PQ* is of constant length *k*, then the differential equation describing such a curve is

a)
$$y \frac{dy}{dx} = \pm \sqrt{k^2 - y^2}$$
 b) $x \frac{dy}{dx} = \pm \sqrt{k^2 - x^2}$ c) $y \frac{dy}{dx} = \pm \sqrt{y^2 - k^2}$ d) $x \frac{dy}{dx} = \pm \sqrt{x^2 - k^2}$

4. The solution of the differential equation $y_1y_3 = 3y_2^2$ is a) $x = A_1y^2 + A_2y + A_3$ b) $x = A_1y + A_2$ c) $x = A_1y^2 + A_2y$ d) None of these

5. If $x = A \cos 4t + B \sin 4t$, then $\frac{d^2x}{dt^2}$ is equal to a) -16x b) 16x c) x d) -x

6. The order of the differential equation associated with the primitive $y = c_1 + c_2 e^x + c_3 e^{-2x+c_4}$, where c_1, c_2, c_3, c_4 are arbitrary constants, is a) 3 b) 4 c) 2 d) None of these

7. The differential equation of all parabolas whose axes are parallel to axis of x, is a) $\frac{d^3y}{dx^3} = 0$ b) $\frac{d^3x}{dy^3} = 0$ c) $\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$ d) $\frac{d^2x}{dy^2} = 0$

8. The solution of the differential equation $(x^2 - yx^2)\frac{dy}{dx} + y^2 + xy^2 = 0$ is a) $\log\left(\frac{x}{y}\right) = \frac{1}{x} + \frac{1}{y} + c$ b) $\log\left(\frac{y}{x}\right) = \frac{1}{x} + \frac{1}{y} + c$ c) $\log(xy) = \frac{1}{x} + \frac{1}{y} + c$ d) $\log(xy) + \frac{1}{x} + \frac{1}{y} = c$

9. The solution of the differential equation $x \, dy - y \, dx - \sqrt{x^2 - y^2} \, dx = 0$ is a) $y - \sqrt{x^2 + y^2} = cx^2$ b) $y + \sqrt{x^2 + y^2} = cx^2$ c) $y + \sqrt{x^2 + y^2} = cy^2$ d) $x - \sqrt{x^2 + y^2} = cy^2$

- 10. Solution of $\frac{dy}{dx} = \frac{x \log x^2 + x}{\sin y + y \cos y}$ is a) $y \sin y = x^2 \log x + c$ c) $y \sin y = x^2 + \log x$ b) $y \sin y = x^2 + c$ d) $y \sin y = x \log x + c$
- 11. If integrating factor of $x(1-x^2)dy + (2x^2y y ax^3)dx = 0$ is $e^{\int Pdx}$, then *P* is equal to a) $\frac{2x^2 - ax^3}{x(1-x^2)}$ b) $2x^2 - 1$ c) $\frac{2x^2 - 1}{ax^3}$ d) $\frac{2x^2 - 1}{x(1-x^2)}$
- 12. The solution of the differential equation $\frac{dy}{dx} + \frac{y}{x} = x^2$, is a) $y = \frac{x^2}{4} + C x^{-2}$ b) $y = x^{-1} + C x^{-3}$ c) $y = \frac{x^3}{4} + C x^{-1}$ d) $xy = x^2 + C$
- 13. The differential equation of all circles passing through the origin and having their centres on the *x*-axis is

a)
$$x^2 = y^2 + xy \frac{dy}{dx}$$
 b) $x^2 = y^2 + 3xy \frac{dy}{dx}$ c) $y^2 = x^2 + 2xy \frac{dy}{dx}$ d) $y^2 = x^2 - 2xy \frac{dy}{dx}$

- 14. If y'' 3y' + 2y = 0 where y(0) = 1, y'(0) = 0, then the value of y at $x = \log 2$ is a) 1 b) -1 c) 2 d) 0
- 15. The differential equation of all straight lines touching the circle $x^2 + y^2 = a^2$ is a) $\left(y - \frac{dy}{dx}\right)^2 = a^2 \left[1 + \left(\frac{dy}{dx}\right)^2\right]$ b) $\left(y - x \frac{dy}{dx}\right)^2 = a^2 \left[1 + \left(\frac{dy}{dx}\right)^2\right]$ c) $\left(y - x \frac{dy}{dx}\right) = a^2 \left[1 + \frac{dy}{dx}\right]$ d) $\left(y - \frac{dy}{dx}\right) = a^2 \left[1 - \frac{dy}{dx}\right]$

16. The solution of the differential equation $(x^2 - yx^2)\frac{dy}{dx} + y^2 + xy^2 = 0$ is a) $\log\left(\frac{x}{y}\right) = \frac{1}{x} + \frac{1}{y} + c$ b) $\log\left(\frac{y}{x}\right) = \frac{1}{x} + \frac{1}{y} + c$ c) $\log(xy) = \frac{1}{x} + \frac{1}{y} + c$ d) $\log(xy) + \frac{1}{x} + \frac{1}{y} = c$

17. The equation of the curve satisfying the equation $(xy - x^2)\frac{dy}{dx} = y^2$ and passing through the point (-1,1) is a) $y = (\log y - 1)x$ b) $y = (\log y + 1)x$ c) $x = (\log x - 1)y$ d) $x = (\log x + 1)y$

- 18. $y = 2e^{2x} e^{-x}$ is a solution of the differential equation a) $y_2 + y_1 + 2y = 0$ b) $y_2 - y_1 + 2y = 0$ c) $y_2 + y_1 = 0$ d) $y_2 - y_1 - 2y = 0$
- 19. The solution of y' y = 1, y(0) = -1 is given by y(x), which is equal to a) $-\exp(x)$ b) $-\exp(-x)$ c) -1 d) $\exp(x) - 2$

20. The differential equation of the family of circles with fixed radius 5 unit and centre on the line y = 2, is

a) $(x-2)^2 y'^2 = 25 - (y-2)^2$ c) $(y-2)y'^2 = 25 - (y-2)^2$ b) $(x-2)y'^2 = 25 - (y-2)^2$ d) $(y-2)^2 y'^2 = 25 - (y-2)^2$