

9. A unit vector \vec{a} makes an angle $\frac{\pi}{4}$ with z-axis, if $\vec{a} + \hat{i} + \hat{j}$ is a unit vector, then \vec{a} is equal to a) $\frac{\hat{i}}{2} + \frac{\hat{j}}{2} + \frac{\hat{k}}{2}$ b) $\frac{\hat{i}}{2} + \frac{\hat{j}}{2} - \frac{\hat{k}}{\sqrt{2}}$ c) $-\frac{\hat{i}}{2} - \frac{\hat{j}}{2} + \frac{\hat{k}}{\sqrt{2}}$ d) $\frac{\hat{i}}{2} - \frac{\hat{j}}{2} - \frac{\hat{k}}{\sqrt{2}}$

10.	If $ \vec{\mathbf{a}} \times \vec{\mathbf{b}} ^2 + \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} ^2 =$ a) 12	144 and $ \vec{\mathbf{a}} = 4$ then $ \vec{\mathbf{b}} $ b) 3	is equal to c) 8	d) 4	
11.	If \vec{a} is non-zero vector	of modulus $ \vec{\mathbf{a}} $ and m is	a non-zero scalar, then r	$n \vec{\mathbf{a}}$ is a unit vector, if	
	a) $m = \pm 1$	b) $m = \vec{\mathbf{a}} $	c) $m = \frac{1}{ \vec{a} }$	d) $m = \pm 2$	
12. If the constant forces $2\hat{i} - 5\hat{j} + 6\hat{k}$ and $-\hat{i} + 2\hat{j} - \hat{k}$ act on a particle due to which it is displaced from a point $A(4, -3, -2)$ to a point $B(6, 1, -3)$, then the work done by the forces is					
	a) 15 units	b) —15 units	c) 9 units	d) —9 units	
13 . If <i>P</i> , <i>Q</i> , <i>R</i> are three points with respective position vectors $\hat{i} + \hat{j}$, $\hat{i} - \hat{j}$ and $a\hat{i} + b\hat{j} + c\hat{k}$. The points <i>P</i> , <i>Q</i> , <i>R</i> are collinear, if					
	a) $a = b = c = 1$	b) $a = b = c = 0$	c) $a = 1, b, c \in R$	d) $a = 1, c = 0, b \in R$	
14. The projection of the vector $\vec{a} = 4\hat{i} - 3\hat{j} + 2\hat{k}$ on the axis making equal acute angles with the coordinate axes is					
	a) 3	b) √3	c) $\frac{3}{\sqrt{3}}$	d) None of these	
15	15 The value of $[2\hat{r}, 2\hat{r}]$ = $[\hat{r}]$ is equal to				
15.	a) -30	b) -25	c) 0	d) 11	
16.	16. $(\vec{a} \times \vec{b}) \times (\vec{a} \times \vec{c}) \cdot \vec{d}$ equals				
	a) $[\vec{a}\vec{b}\vec{c}](\vec{b}\cdot\vec{d})$	b) $\left[\vec{a}\vec{b}\vec{c}\right]\left(\vec{a}\cdot\vec{d}\right)$	c) $[\vec{a}\vec{b}\vec{c}](\vec{c}\cdot\vec{d})$	d) None of these	
17. If the constant force $2\hat{i} - 5\hat{j} + 6\hat{k}$ and $-\hat{i} + 2\hat{j} - \hat{k}$ act on a particle due to which it is displaced from a particle $4(4 - 2 - 2)$ to a paint $B(4 - 2)$ then the quark dama has the formation					
pon	a) 10 units	b) -10 units	c) 9 units	d) None of these	
18. If forces of magnitudes 6 and 7 units acting in the directions $\hat{i} - 2\hat{j} + 2\hat{k}$ and $2\hat{i} - 3\hat{j} - 6\hat{k}$ respectively act on a particle which is displaced from the point $P(2, -1, -3)$ to $Q(5, -1, 1)$, then the work done by the forces is					
	a) 4 units	b) –4 units	c) 7 units	d) –7 units	
19. $[\vec{\mathbf{b}} \times \vec{\mathbf{c}} \ \vec{\mathbf{c}} \times \vec{\mathbf{a}} \ \vec{\mathbf{a}} \times \vec{\mathbf{b}}]$ is equal to					
	a) [a b c]	b) 2[$\vec{a} \vec{b} \vec{c}$]	c) $\left[\vec{a}\vec{b}\vec{c}\right]^2$	d) $\vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}})$	
20.	20. <i>ABCD</i> is a quadrilateral, <i>P</i> , <i>Q</i> are the mid points of \overrightarrow{BC} and \overrightarrow{AD} , then $\overrightarrow{AB} + \overrightarrow{DC}$ is equal to				
	a) 3 QP	b) $\overrightarrow{\mathbf{QP}}$	c) 4 QP	d) $2\overline{\mathbf{QP}}$	

Ps

Smart