

CLASS: XIIth DATE:

SOLUTIO

SUBJECT: CHEMISTRY

DPP NO. :2

1 (a)

Topic:-Haloalkanes and Haloarenes

$$CH_2$$
— CH_2 — CH_2 OCH_2 OCH_2

 α and ω -dihalogen derivative of an alkane on treatment with Mg or Zn or Na gives cycloalkane.

2 **(b)**

$$C_2H_5I \xrightarrow{KOH(alc.)} C_2H_4 \xrightarrow{Br_2} CH_2BrCH_2Br$$

 $CH_2BrCH_2Br \xrightarrow{KCN} CH_2CNCH_2CN$

3

In [F] order of quantity of alkene 2 > 1 > 3

These on addition with Br_2/CCl_4 to give their addition products which have C_4H_6 Br_2 as molecular formula.

$$(1)CH_3 - CH - CH - CH_3$$

$$(2)CH_3 - CH - CH - CH_3$$

$$(3)BrH2C - CH - CH2 - CH3$$

$$(4)BrH_2C-CH_2-CHBr-CH_2$$

$$(5)CH_2Br - CH_2 - CH_2 - CH_2Br$$

$$\mathsf{CH_2OHCH_2OH} \xrightarrow{\mathsf{HCl}} \mathsf{CH_2ClCH_2Cl}$$

Tertiary carbonium is most stable.

$$CH_2 = CH - CH = CH_2 + Br_2 \rightarrow$$

Smart DPPs

1,3-butadiene

$$\begin{array}{c} \text{(i)CH}_2 = \text{CH} - \text{CH} - \text{CH}_2 \\ & | & | \\ & \text{Br} & \text{Br} \end{array}$$

3,4-dibromo butane

(ii)
$$CH_2 - CH = CH - CH_2$$
 $\begin{vmatrix} & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$

1,4-dibromo-2-butene

1,4-adduct is more stable than the 1,2-adduct.

10 (d

Write chlorination reaction for all of them to find which gives of the maximum number of monochlorination product.

(a)
$$CH_3CH_2CH_2CH_2CH_3 + Cl_2 \xrightarrow{UV}$$

 Cl
 $ClCH_2 - (CH_2)_3CH_3 + CH_3 - CH - (CH_2)_2$
 $CH_3 + CH_3 - CH_2 - CH - CH_2 - CH_3$

: Total 3 monochlorinated products are formed.

(b)
$$CH_3 - CH - CH_2 - CH_3 + Cl_2 \xrightarrow{UV}$$

$$CH_3$$

$$Cl$$

$$ClCH_2 - CH - CH_2 - CH_3 + CH_3 - C - CH_2$$

$$CH_3$$

$$-CH_3 + CH_3 - CH - CH_2 - CH_2Cl$$

$$CH_3$$

: Total 3 monochlorinated products are formed.

(c)
$$CH_3 - C - H + Cl_2 \xrightarrow{UV}$$

$$CH_3 \\ CH_3 \\ CH_3 \\ CH_3 - C - Cl + CH_3 - C - H$$

$$CH_3 - C - Cl + CH_3 - C - H$$

$$CH_3 - CH_3$$

: Total 3 monochlorinated products are formed.

$$\begin{array}{c} \operatorname{CH_3} \\ | \\ (\operatorname{d})\operatorname{CH_3} - \operatorname{C} - \operatorname{CH_3} + \operatorname{Cl_2} \xrightarrow{\operatorname{UV}} \\ | \\ \operatorname{CH_3} \\ \operatorname{CH_3} \\ | \\ \end{array}$$

SMARTLEARN

COACHING

$$\begin{array}{c} \mathrm{CH_3} - \mathrm{C} - \mathrm{CH_2Cl} \\ | \\ \mathrm{CH_3} \end{array}$$

: Only one monochlorinated products formed.

11 (a)
$$\begin{array}{c} \text{Cl} & \text{OH} \\ | & | \\ \text{CH}_3 - \text{C} - \text{CH}_3 \xrightarrow{\text{Hydrolysis}} \text{CH}_3 - \text{C} - \text{CH}_3 \\ | & | \\ \text{Cl} & \text{OH} \\ \end{array}$$

2,2-dichloro propane

$$\xrightarrow{-H_2O} CH_3 - C - CH_3$$

acetone

$$\mathrm{CH}_2 = \mathrm{CHCl} + \mathrm{HCl} \rightarrow \mathrm{CH}_3 - \mathrm{CHCl}_2$$
 ethylidene chloride sor 1, 1 dichloroethane

13 (a)

$$\mu_{\text{CCl}_4} = 0$$
; $\mu_{\text{CHcl}_3} = 1.0 \text{ D}$; $\mu_{\text{CH}_2\text{Cl}_2} = 1.6 \text{ D}$, $\mu_{\text{CH}_3\text{Cl}} = 1.86 \text{ D}$

unstable

(b)

$$0=C=O+C_2H_5OMgBr \rightarrow OHO$$

$$O=C \xrightarrow{C_2H_5} \xrightarrow{HOH} O=C \xrightarrow{C_2H_5} OHO$$

15

$$CH_3COOAg + CH_3Cl \rightarrow CH_3COOCH_3 + AgCl$$

$$C_3H_6Cl_2$$

$$(A)$$

$$KOH(alc.) \rightarrow C_3H_4 Or$$

$$(C)$$

$$CH_3C \equiv CH \xrightarrow{H_2O}_{H^+,Hg^{2+}} CH_3COCH_3 \xrightarrow{Br2}_{+NaOH} CHBr_3 + CH_3COONa$$

Since, B and D are different thus, B is CH_3CH_2CHO and so A is $CH_3CH_2CHCl_2$.

18

Tertiary alcohols readily react with Lucas reagent (ZnCl₂/conc. HCl) to give white turbidity due to the formation of halide.

$$H_3C$$
 — CH_3 CH_3

Carbylamine test is a characteristic test of aliphatic and aromatic primary amines. In this test, amine is heated with chloroform and alcoholic potash when a bad smelling isocyanide (carbylamine) is formed.

$$RNH_2 + CHCl_3 + 3KOH (alc.)$$

$$RN = C + 3KCl + 3H_2O$$
alkyl isocyanide
(bad smelling)

in ether.

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	A	В	D	C	D	A	D	A	A	D
Q.	11	12	13	14	15	16	17	18	19	20
Α.	A	D	A	В	В	Α	В	A	С	A

SMARTLEARN COACHING