

Smart DPPs

$$\cos \phi = \frac{R}{Z} = \frac{R}{\sqrt{R^2 + \omega^2 L^2}}$$
$$= \frac{12}{\sqrt{(12)^2 + 4 \times \pi^2 \times (60)^2 \times (0.1)^2}} \Rightarrow \cos \phi = 0.30$$

8

9

0

12

13

14

(d) Magnetic field intensity at a distance r from the straight wire carrying current is $B = \frac{\mu_0 i}{2\pi r}$ As area of loop, $A = a^2$ And magnetic flux, $\phi = BA$ $\therefore \phi = \frac{\mu_0 i a^2}{2\pi r}$ The induced emf in the loop is $e = \left| \frac{d\phi}{dt} \right| = \left| \frac{d}{dt} \frac{\mu_0 i a^2 v}{2 \pi r} \right|$ $e = \frac{\mu_0 i a^2}{2 \pi r^2} \frac{dr}{dt} = \frac{\mu_0 i a^2 v}{2 \pi r^2}$ Where $v = \frac{dr}{dt}$ is velocity. (c) Phase difference $\Delta \phi = \phi_2 - \phi_1 = \frac{\pi}{6} - \left(\frac{-\pi}{6}\right) = \frac{\pi}{3}$ (b) As $L = \frac{\mu_0 N^2 A}{l}$ $\therefore A \rightarrow \frac{2 \times 2 \times 4}{2}$ times = 8 times (a) $i_P = \frac{n_s}{n_P} i_s = \frac{50}{200} \times 40 = 10 \text{ A}$ (a) Current $i = i_0 \sin(\omega t + \phi)$ $i_p = i_0 \sin \omega t \cos \phi + i_0 \cos \omega t \sin \phi$ Thus, $i_0 \cos \phi = 10$ $i_0 \sin \phi = 8$ $\tan \phi = \frac{4}{5}$ Hence, C (d) In a purely inductive circuit, current is $i = i_0 \sin\left(\omega t - \frac{\pi}{2}\right)$ L 0000

Which shows that the current lags behind the emf by a phase angle of $\frac{\pi}{2}$ or 90° or the emf leads the current by a phase angle of $\frac{\pi}{2}$ or 90°.

2

15

(b)

Smart DPPs

$$P = \frac{V_{rms}^2}{R} = \frac{(30)^2}{10} = 90 W$$

17

(c) In series LCR, the impedance of the circuit is given by $Z = \sqrt{R^2 + (X_L - X_C)^2}$ At resonance, $X_L = X_C$ $\therefore Z = R$ At resonance, the phase difference between the current

At resonance, the phase difference between the current and voltage is $0^\circ\!.$ Current is maximum at resonance

 $e = \frac{E_P i_P}{E_S} = \frac{1100 \times 100}{220} = 500 \text{ A} = 0.5 \text{ kA}$

20

(c)

Impedance $Z = \sqrt{R^2 + X^2} = \sqrt{(8)^2 + (6)^2} = 10\Omega$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
Α.	В	А	В	D	С	В	В	D	С	В
								A	100	
Q.	11	12	13	14	15	16	17	18	19	20
A.	A	Α	A	D	В	В	C	D	C	C
						0	0			
COACHING										