

	DPP DAILY PRACTICE PROBLEMS										
	Class : XIIth Date :	Solutions	Subject : PHYSICS DPP No. : 2								
		Topic :- NUCLEI									
1	(b)										
2	β –decay from nuclei is base	d on this process only									
Z	The binding energy of nucleu	s may be defined as the energy	equivalent to the mass defect of the								
	nucleus.										
	If Δm is mass defect than according Energy	ording to Einstein's mass energ	y relation.								
	$= \Delta mc^2 = [\{Zm_p +$	$(A-Z)m_n] - M] c^2$									
	$= (7 \times 1.00783 + 7)$	$\times 1.00867 - 14.00307)c^2$									
	or BE = 0.1124×931.5 Me or BE = 104.6	V									
3	(a)										
	Ionisation energy of $Li^{++} = 9$	hcR									
	Ionization energy = $RchZ^2$ = $= 9hcR$	$Rch(3)^{2}$ (as $Z = 3$ for Li^{++})									
4	(b)										
-	$E_b + E_c > E_a$										
5	(b) n^2 (2) ²										
	$r = \frac{\pi}{Z}(r_0); \Rightarrow r_{(n=2)} = \frac{T}{2} \Rightarrow$	< 0.53 = 1.06 Å									
6	(b)	110-312.2106									
	$= 2.0 \times 10^{-24} kg - m/s$	$.1 \times 10^{-51} \times 2.2 \times 10^{51}$	t a ry n								
7	(c)										
	According to the quark mode	l, it is possible to build all hadr	ons using 3 quarks and 3 antiquarks								
8	(a)	cuvely known as naurons									
	N = M - Z = Total no. of nuc	leons – no. of protons									
10	(a)										
10	Nuclear density is constant h	ence, mass ∝ volume									
	Or $m \propto V$										
11	(C) $a_0 U^{235}$ is normally fissionable	e									
13	(c)	~									
	Out side the nucleus, neutron	is unstable (life $-932 s$)									
14	(a) The mass of nucleus formed i	s always less than the sum of th	he masses of the constituent protons								
	and neutrons <i>i</i> . <i>e</i> ., $m < (A - A)$	$Z)m_n + Zm_p$	the masses of the constituent protons								
15	(c)	r									

Binding energy per nucleon increases with atomic number. The greater the binding energy per nucleon the more stable is the nucleus

For $_{26}Fe^{56}$ number of nucleons is 56

This is most stable nucleus, since maximum energy is needed to pull a nucleon away from it (a)

$$X(n, \alpha) {}_{3}^{7}Li \Rightarrow {}_{Z}X^{A} + {}_{0}n^{1} \rightarrow 3^{Li^{7}} + {}_{2}He^{4}$$

$$Z = 3 + 2 = 5 \text{ and } A = 7 + 4 - 1 = 10$$

$$\therefore_{5} X^{10} = {}_{5} B^{10}$$

(a)

17

16

 $\frac{N}{N_0} = \left(\frac{1}{2}\right)^n \Rightarrow \frac{1}{8} = \left(\frac{1}{2}\right)^n \Rightarrow n = 3$ Now $t = n \times T_{1/2} = 3 \times 3.8 = 11.4 \ days$

18

(c)

or

(a)

Experimental measurements show that volume of a nucleus is proportional to its mass number*A*. If *R* is the radius of the nucleus assumed to be spherical, then its volume

 $\begin{pmatrix} \frac{4}{3}\pi R^3 \end{pmatrix} \propto A$ $R \propto A^{1/3}$ $R = R_0 A^{1/3}$

or R = R

where R_0 is an empirical constant whose value is found to be 1.1×10^{-15} m.

20

Rest energy of an electron = $m_e c^2$ Here $m_e = 9.1 \times 10^{-31} kg$ and c = velocity of light \therefore Rest energy = $9.1 \times 10^{-31} \times (3 \times 10^8)^2$ joule = $\frac{9.1 \times 10^{-31} \times (3 \times 10^8)^2}{1.6 \times 10^{-19}} eV = 510 \ keV$

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	В	С	А	В	В	В	C	Α	В	А			
Ì								1	1				
Q.	11	12	13	14	15	16	17	18	19	20			
A.	С	A	С	Α	С	A	A	С	А	А			
	. 6			~		ĺ							