

	DPPP DAILY PRACTICE PROBLEMS							
C D	Jass : XIIthSolutionsSubject : PHYSICSDate :DPP No. : 2							
	Topic :- semiconductor electronics: materials, devies and simple circuits							
1								
	$\overline{A \cdot \overline{A}} = \overline{A} + \overline{\overline{A}} = \overline{A} + A = 1$							
	$A \cdot A = 0$							
	A + A = 1							
r	A + 1 = 1 (b)							
Z	(b) The conductivity of an intrinsic semiconductor decreases with decrease in temperature and so it							
	behaves as an insulator at 0 K. The conductivity of an insulator is zero. Therefore, the electrical conductivity of an intrinsic semiconductor at 0 K is equal to zero.							
5	(c)							
	When a $p - n$ junction is formed, <i>n</i> -side attains positive potential and <i>p</i> -side attains negative.							
	When ends of p and n of a $p - n$ junction are joined by a wire, there will be a steady conventional							
c	current from <i>n</i> -side to <i>p</i> -side through the wire and <i>p</i> -side to <i>n</i> -side through the $p - n$ junction.							
0	(C) Wood is non-swetchling							
7	(c)							
,	At ordinary temperature $n_{i} = n_{i}$							
8	(d) $(h_e) = h_h$							
-	As shown, we conclude that A and C are analogue signals but B is digital signal.							
9	(b)							
	In reverse biasing, width of depletion layer increases							
10	(c) $R_p = \frac{V_p}{i} = \frac{50}{150 \times 10^{-3}} = 333.3 \Omega$							
11	$l_p = 150 \times 10$							
11								
	$V_b - l_b R_b \Rightarrow R_b = \frac{1}{35 \times 10^{-6}} = 257 \text{kM}$							
12	(d)							
	In forward biasing both V_B and x decreases							
13	(a)							
	Truth table for given combination is							
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
	This comes out to be truth table of OR gate.							
14	(c)							

In the given circuit, diode D_1 is reverse biased, so it will not conduct. Diodes D_2 and D_3 are forward biased, so they will conduct. The corresponding equivalent circuit is as shown in the

figure

The equivalent resistance of the circuit is $R_{eq} = \frac{(5+5) \times 20}{(5+5) + 20} = \frac{10 \times 20}{10 + 20} = \frac{200}{30} = \frac{20}{3}\Omega$ Current through the battery, $I = \frac{10V}{\frac{20}{2}\Omega} = 1.5A$

16

(c)

(c)

(a)

If the voltage of the DC source is increased then both conductor and semiconductor registers same current *ie*, semiconductor is in forward biased condition and it conducts. So, ammeters connected to both semiconductor and conductor will register the same current.

17 **(b)**

The temperature coefficient of resistance of silicon (*ie*, semiconductor) is negative and that of platinum (*ie*, conductor) is positive.

18

In forward biasing of *PN* junction diode width of depletion layer decreases. In intrinsic semiconductor fermi energy level is exactly in the middle of the forbidden gap

C.B.

----- E_f

V.B.

20

The output gate circuit will be as shown below.

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
А.	В	В	C	C	C	С	C	D	В	С		
				1								
Q.	11	12	13	14	15	16	17	18	19	20		
A.	В	D	А	C	D	С	В	C	C	А		
				- /								

SMARTLEARN COACHING