

CLASS: XIIth DATE:

SOLUTIO

SUBJECT: MATHS

DPP NO. : 2

Topic: - CONTINUITY AND DIFFERENTIABILITY

Clearly, f(x) is differentiable for all non-zero values of x. For $x \neq 0$, we have

$$f'(x) = \frac{x e^{-x^2}}{\sqrt{1 - e^{-x^2}}}$$

Now,

(LHD at
$$x = 0$$
) = $\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{+}} \frac{f(0 - h) - f(0)}{x}$

(LHD at
$$x = 0$$
) = $\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{h \to 0} \frac{f(0 - h) - f(0)}{x - 0}$
 \Rightarrow (LHD at $x = 0$) = $\lim_{h \to 0} \frac{\sqrt{1 - e^{-h^2}}}{-h} = \lim_{h \to 0} -\frac{\sqrt{1 - e^{-h^2}}}{h}$

$$\Rightarrow$$
 (LHD at $x = 0$) = $-\lim_{h \to 0} \sqrt{\frac{e^{h^2} - 1}{h^2}} \times \frac{1}{\sqrt{e^{h^2}}} = -1$

and, (RHD at
$$x = 0$$
) = $\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{h \to 0} \frac{\sqrt{1 - e^{-h^2}} - 0}{h}$

$$\Rightarrow$$
 (RHD at $x = 0$) = $\lim_{h \to 0} \sqrt{\frac{e^{h^2} - 1}{h^2}} \times \frac{1}{\sqrt{e^{h^2}}} = 1$

So, f(x) is not differentiable at x = 0

Hence, the set of points of differentiability of f(x) is $(-\infty, 0) \cup (0, \infty)$

2

Since f(x) is continuous at x = 0

$$f(0) = \lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0$$

For f(x) to be continuous everywhere, we must have,

$$f(0) = \lim_{x \to 0} f(x)$$

$$\Rightarrow f(0) = \lim_{x \to 0} \frac{2 - (256 - 7x)^{1/8}}{(5x + 32)^{1/5} - 2} \left[\text{Form} \frac{0}{0} \right]$$

$$\Rightarrow f(0) = \lim_{x \to 0} \frac{\frac{7}{8}(256 - 7x)^{-\frac{7}{8}}}{(5x + 32)^{-4/5}} = \frac{7}{8} \times \frac{2^{-7}}{2^{-4}} = \frac{7}{64}$$

$$\Rightarrow f(0) = \lim_{x \to 0} \frac{\frac{7}{8}(256 - 7x)^{-\frac{7}{8}}}{(5x + 32)^{-\frac{4}{5}}} = \frac{7}{8} \times \frac{2^{-7}}{2^{-4}} = \frac{7}{64}$$

We have,

$$f(x) = |x|^3 = \begin{cases} x^3, & x \ge 0 \\ -x^3, & x < 0 \end{cases}$$

$$\therefore \text{ (LHD at } x = 0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} -\frac{x^{3}}{x} = 0$$

$$\therefore \text{ (RHD at } x = 0) = \lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^3}{x} = 0$$
Clearly, (LHD at $x = 0$) = (RHD at $x = 0$)

Hence, f(x) is differentiable at x = 0 and its derivative at x = 0 is 0

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \left(\frac{4^x - 1}{x}\right)^3 \times \frac{\left(\frac{x}{a}\right)}{\sin\left(\frac{x}{a}\right)} \cdot \frac{ax^2}{\log\left(1 + \frac{1}{3}x^2\right)}$$

$$= (\log 4)^3 \cdot 1 \cdot a \lim_{x \to 0} \left(\frac{x^2}{\frac{1}{3}x^2 - \frac{1}{18}x^4 + \dots} \right)$$

$$=3a\,(\log 4)^3$$

$$\lim_{x\to 0} f(x) = f(0)$$

$$\Rightarrow 3a(\log 4)^3 = 9(\log 4)^3$$

$$\Rightarrow$$
 $a = 3$

We have,

$$f(x) = |[x]x| \text{ for } -1 < x \le 2$$

$$\Rightarrow f(x) = \begin{cases} -x, & -1 < x < 0 \\ 0, & 0 \le x < 1 \\ x, & 1 \le x < 2 \\ 2x, & x = 2 \end{cases}$$

It is evident from the graph of this function that it is continuous but not differentiable at x = 0. Also, it is discontinuous at x = 1 and non-differentiable at x = 2

Given,
$$f(x) = [x^3 - 3]$$

Let
$$g(x) = x^3 - x$$
 it is in increasing function

$$g(1) = 1 - 3 = -2$$

and
$$g(2) = 8 - 3 = 5$$

Here, f(x) is discontinuous at six points

Given,
$$y = \cos^{-1} \cos(x - 1)$$
, $x > 0$

$$\Rightarrow \quad y = x - 1, \qquad 0 \le x - 1 \le \pi$$

$$\therefore y = x - 1, \qquad 1 \le x \le \pi + 1$$

At
$$x = \frac{5\pi}{4} \in [1, \pi + 1]$$

$$\Rightarrow \frac{dy}{dx} = 1 \quad \Rightarrow \quad \left(\frac{dy}{dx}\right)_{x = \frac{5\pi}{4}} = 1$$

We have,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x) + f(h) - f(x)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(h)}{h} = \lim_{h \to 0} \frac{h^2 g(h)}{h}$$

We have,
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x) + f(h) - f(x)}{h} \quad [\because f(x+y) = f(x) + f(y)]$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(h)}{h} = \lim_{h \to 0} \frac{h^2 g(h)}{h}$$

$$\Rightarrow f'(x) = 0 \times g(0) = 0 \quad [\because g \text{ is continuous}]$$

$$\therefore \lim_{h \to 0} g(h) = g(0)$$
10 **(b)**

10

Using Heine's definition of continuity, it can be shown that f(x) is everywhere discontinuous

For
$$x \neq -1$$
, we have

$$f(x) = 1 - 2x + 3x^2 - 4x^3 + \dots \infty$$

$$\Rightarrow f(x) = (1+x)^{-2} = \frac{1}{(1+x)^2}$$

Thus, we have

$$f(x) = \begin{cases} \frac{1}{(1+x)^2}, & x \neq -1\\ 1, & x = -1 \end{cases}$$
We have, $\lim_{x \to -1^-} f(x) \to \infty$ and $\lim_{x \to -1^-} f(x) \to \infty$

So, f(x) is not continuous at x = -1

Consequently, it is not differentiable there at

At x = a.

$$LHL = \lim_{x \to a^{-}} f(x) = \lim_{x \to a} 2a - x = a$$

LHL=
$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a} 2a - x = a$$

And RHL= $\lim_{x \to a^{+}} f(x) = \lim_{x \to a} 3x - 2a = a$

And
$$f(a) = 3(a) - 2a = a$$

$$\therefore$$
 LHL=RHL= $f(a)$

Hence, it is continuous at x = a

Again, at x = a

Again, at
$$x - a$$

$$LHD = \lim_{h \to 0} \frac{f(a-h) - f(a)}{-h}$$

$$= \lim_{h \to 0} \frac{2a - (a-h) - a}{-h} = -1$$
and RHD= $\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

$$= \lim_{h \to 0} \frac{3(a+h) - 2a - a}{h} = 3$$

and RHD=
$$\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$$

$$= \lim_{h \to 0} \frac{3(a+h) - 2a - a}{h} = 3$$

Hence, it is not differentiable at x = a

We have,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x)f(h) - f(x)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - 1}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{1 + (\sin 2h)g(h) - 1}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x)f(h) - f(x)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(h) - f(x)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - 1}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{1 + (\sin 2h)g(h) - 1}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{\sin 2h}{h} \times \lim_{h \to 0} g(h) = 2f(x)g(0)$$
14 (c)

If $-1 \le x \le 1$, then $0 \le x \sin \pi x \le 1/2$

$$f(x) = [x \sin \pi x] = 0, \text{ for } -1 \le x \le 1$$

If 1 < x < 1 + h, where h is a small positive real number, then

$$\pi < \pi \ x < \pi + \pi \ h \Rightarrow -1 < \sin \pi \ x < 0 \Rightarrow -1 < x \sin \pi \ x < 0$$

$$f(x) = [x \sin \pi x] = -1$$
 in the right neighbourhood of $x = 1$

Thus, f(x) is constant and equal to zero in [-1,1] and so f(x) is differentiable and hence continuous on (-1,1)

At x = 1, f(x) is discontinuous because

$$\Rightarrow \lim_{x \to 1^{-}} f(x) = 0 \text{ and } \lim_{x \to 1^{+}} f(x) = -1$$

Hence, f(x) is not differentiable at x = 1

15 (d)

We have,

COACHING

(LHD at
$$x = 0$$
) = $\left\{ \frac{d}{dx}(1) \right\}_{x=0} = 0$

(RHD at
$$x = 0$$
) = $\left\{ \frac{d}{dx} (1 + \sin x) \right\}_{x=0} = \cos 0 = 1$

Hence, f'(x) at x = 0 does not exist

Here,
$$f'(x) = \begin{cases} 2bx + a, & x \ge -1 \\ 2a, & x < -1 \end{cases}$$

Given, f'(x) is continuous everywhere

$$\lim_{x \to -1^+} f(x) = \lim_{x \to -1^-} f(x)$$

$$\Rightarrow -2b + a = -2a$$

$$\Rightarrow -2b + a = -2a$$

$$\Rightarrow 3a = 2b$$

$$\Rightarrow$$
 $a = 2$, $b = 3$

or
$$a = -2$$
, $b = -3$

17 (b)

We have,

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\log \cos x}{\log(1 + x^2)}$$

$$\Rightarrow \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\log(1 - 1 + \cos x)}{\log(1 + x^2)} \cdot \frac{1 - \cos x}{1 - \cos x}$$

$$\Rightarrow \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\log(1 - 1 + \cos x)}{\log(1 + x^2)} \cdot \frac{1 - \cos x}{1 - \cos x}$$

$$\Rightarrow \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\log\{1 - (1 - \cos x)\}}{1 - \cos x} \cdot \frac{1 - \cos x}{\log(1 + x^2)}$$

$$\Rightarrow \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = -\lim_{x \to 0} \log \frac{[1 - (1 - \cos x)]}{-(1 - \cos x)} \times \frac{2 \sin^2 \frac{x}{2}}{4 \left(\frac{x}{2}\right)^2} \times \frac{x^2}{\log(1 + x^2)}$$

$$\Rightarrow \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = -\frac{1}{2}$$

Hence, f(x) is differentiable and hence continuous at x = 0

Since
$$f(x)$$
 is continuous at $x = 1$. Therefore,

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) \Rightarrow A - B = 3 \Rightarrow A = 3 + B \qquad \dots (i)$$

If f(x) is continuous at x = 2, then

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) \Rightarrow 6 = 4B - A \quad ...(ii)$$

Solving (i) and (ii) we get B = 3

As f(x) is not continuous at x = 2. Therefore, $B \neq 3$

Hence, A = 3 + B and $B \neq 3$

19 (a)

We have,

$$f(x) = \begin{cases} x - 4, & x \ge 4 \\ -(x - 4), & 1 \le x < 4 \\ (x^3/2) - x^2 + 3x + (1/2), & x < 1 \end{cases}$$

Clearly, f(x) is continuous for all x but it is not differentiable at x = 1 and x = 4

It is given that f(x) is continuous at x = 1

$$\therefore \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1)$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1)$$

$$\Rightarrow \lim_{x \to 1^{-}} a[x+1] + b[x-1] = \lim_{x \to 1^{+}} a[x+1] + b[x-1]$$

$$\Rightarrow \stackrel{x \to 1}{a - b} = 2a + 0 \times b$$

$$\Rightarrow a + b = 0$$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	В	С	D	В	A	D	С	В	D	В
Q.	11	12	13	14	15	16	17	18	19	20
A.	В	В	В	C	D	С	В	A	A	A

SMARTLEARN COACHING