

CLASS : XIth DATE : SUBJECT : CHEMISTRY DPP No. : 3

Topic :-SOLUTIONS

A 5.2 molal aqueous solution of methyl alcohol, *CH*₃*OH*, is supplied. What is the mole fraction of methyl alcohol in the solution?
 a) 1.100
 b) 0.190
 c) 0.086
 d) 0.050

- 2. Equal masses of methane and oxygen are mixed in an empty container at 25°C. The fraction of the total pressure exerted by oxygen is a) $\frac{2}{3}$ b) $\frac{1}{3} \times \frac{273}{298}$ c) $\frac{1}{3}$ d) $\frac{1}{2}$
- 3. Two liquids X and Y form an ideal solution. The mixture has a vapour pressure of 400 mm at 300 K when mixed in the molar ratio of 1:1 and a vapour pressure of 350 mm when mixed in the molar ratio of 1:2 at the same temperature. The vapour pressures of the two pure liquids X and Y respectively are
 - a) 250 mm, 550 mm b) 35<mark>0 mm</mark>, 450 mm c) 350 mm, 700 mm d) 550 mm, 250 mm
- 4. The van't Hoff factor(*i*) for a dilute aqueous solution of Na₂SO₄ is : a) $1 + \alpha$ b) $1 - \alpha$ c) $1 + 2\alpha$ d) $1 - 2\alpha$
- 5. p_A and p_B are the vapour pressure of pure liquid components *A* and *B* respectively of an ideal binary solution. If *xA* represents the mole fraction of component *A*, the total pressure of the solution will be : a) $p_B + x_A(p_B - p_A)$ b) $p_B + x_A(p_A - p_B)$ c) $p_A + x_A(p_B - p_A)$ d) $p_A + x_A(p_A - p_B)$

Formation of a solution from two components can be considered as 6. (1) pure solvent \rightarrow separated solvent molecules, ΔH_1 (2) pure solute \rightarrow separated solvent molecules, ΔH_2 (3) separated solvent and solute molecules \rightarrow solution, ΔH_3 Solution so formed will be ideal if a) $\Delta H_{soln} = \Delta H_1 - \Delta H_2 - \Delta H_3$ b) $\Delta H_{soln} = \Delta H_3 - \Delta H_1 - \Delta H_2$ c) $\Delta H_{soln} = \Delta H_1 + \Delta H_2 + \Delta H_3$ d) $\Delta H_{soln} = \Delta H_1 + \Delta H_2 - \Delta H_3$ Azeotropic mixture of HCl and water has 7. a) 48% HCl c) 36% HCl d) 20.2% HCl b) 22.2% HCl What is the molarity of H₂SO₄ solution that has a density 1.84 g/cc at 35°C and contains 98% solute by 8. weight? a) 4.18 M b) 1.84 M c) 8.41 M d) 18.4 M The osmotic pressure of 0.2 molar solution of urea at 27°C ($R=0.082 \text{ L} \text{ atm mol}^{-1}\text{K}^{-1}$) is 9. c) 0.2 atm d) 27 atm a) 4.92 atm b) 1 atm

10. In which ratio of volume 0.4 M HCl and 0.9 M HCl are to be mixed such that the concentration of the resultant solution becomes 0.7 M ?
a) 4:9
b) 2:3
c) 3:2
d) 1:1

1

d) $C_3 H_6 O_3$

11. The empirical formula of a nonelectrolyte is CH_2O . A solution containing 3 g of the compound exerts the same osmotic pressure as that of 0.05 M glucose solution. The molecular formula of the compound is

c) $C_A H_B O_A$

- a) *CH*₂*O*
- 12. Which of the following can be measured by the Ostwald-Walker dynamic method? a) Relative lowering of vapour pressure b) Lowering of vapour pressure c) Vapour pressure of the solvent d) All of the above

b) $C_2 H_4 O_2$

13. On shaking 10 mL of 0.1 molar solution of an organic compound in water with 10 mL of CCl₄ til equilibrium is attained, concentration of the organic compound in water would be (K = 9) in molar units : a) 0.01 b) 0.09 c) 0.001 d) 0.009

14. A solution containing 1.8 g of a compound (empirical formula CH_2O) in 40 g of water is observed to freeze at $-0.465^{\circ}C$. The molecular formula of the compound is

 $(K_f \ of \ water = 1.86 \ kg \ K \ mol^{-1})$ b) $C_3 H_6 O_2$ a) $C_2 H_4 O_2$

c) $C_4 H_8 O_4$

d) $C_6 H_{12} O_6$

- 15. For dilute solution Raoult's law states that
 - a) The relative lowering of vapour pressure is equal to mole fraction of solute
 - b) The lowering of vapour pressure is equal to the mole fraction of solute
 - c) The vapour pressure of the solution is equal to mole fraction of the solvent
 - d) The relative lowering of vapour pressure is proportional to amount of solute in solution

16. For an ideal binary liquid solution with $P_A^0 > P_B^0$ which relation between X_A (mole fraction of A in liquid phase) and Y_A (mole fraction of A in vapour phase) is correct, X_B and Y_B are mole fraction of B in liquid and vapour phase respectively :

- a) $X_A = Y_A$ b) $X_A > Y_A$ c) $\frac{X_A}{X_B} < \frac{Y_A}{Y_B}$

d) X_A , Y_A , X_B and Y_B cannot be corelated

- 17. The normality of 2.3 M H_2SO_4 solution is a) 4.6 N b) 5.6 N c) 6.6 N d) 7.6 N
- 18. The molecular weight of NaCl determined by studying freezing point depression of its 0.5% aqueous solution is 30. The apparent degree of dissociation of NaCl is b) 0.50 d) 0.95 a) 0.60 c) 0.30
- 19. A 5 molar solution of $H_2 SO_4$ is diluted from 1 L to 10 L. What is the normality of the solution? a) 0.25 N b) 1 N c) 2 N d) 7 N

20. 100 mL of water and 50 mL ether mixture is shaken with succinic acid. At equilibrium ether layer contains 0.127 g and water layer contains 1.843 g of succinic acid. The partition coefficient of succinic acid in favour of water is :
a) 7.26 b) 10 c) 2 d) 4.5

SMARTLEARN COACHING