

SMARTLEARN		Sm	nart DPPs
COACHING	b) $\begin{bmatrix} 2+n & 5-n \\ n & -n \end{bmatrix}$	c) $\begin{bmatrix} 3^n & (-4)^n \\ 1^n & (-1)^n \end{bmatrix}$	d) None of these
 11. If I₃ is the identit a) 0 	ty matrix of order 3, then (I_3) b) 3 I_3	$(r)^{-1} =$ c) I_3	d) Not necessarily exists
12. If $A = [a_{ij}]$ is a set a) $k^n A $	quare matrix of order $n imes n$ a b) $k A $	and k is a scalar, then $ kA$ c) $k^{n-1} A $	4 = d) None of these
13. If $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & - \\ a \end{bmatrix}$ Null matrix	b) 1, then A^2 is equal to b) Unit matrix	c) <i>—A</i>	d) <i>A</i>
14. If $A = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix}$ and a) 1	$B = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}, \text{ then value of } \alpha$ b) -1	for which $A^2 = B$ is c) 4	d) No real values
15. If A is a square ma) 4	hatrix such that A (adj A) = b) 16	$\begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \\ c \end{bmatrix}, \text{ then } \text{adj } A =$	d) 256
16. If ω is a complex a) $\omega^2 A$	cube root of unity and $A = b$	$\begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix}$, then A^{50} is c) A	d) 0
17. If $A = \begin{bmatrix} 1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ a) 0	and $B = \begin{bmatrix} 1 & -2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and A . b) -1	$B = I_3$, then $x + y$ equals c) 2	s d) None of these
18. The adjoint of th a) $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta \cos \theta \end{bmatrix}$	e matrix $\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta \cos \theta \end{bmatrix}$ b) $\begin{bmatrix} \sin \theta & \cos \theta \\ \cos \theta \sin \theta \end{bmatrix}$	c) $\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta \cos \theta \end{bmatrix}$	d) $\begin{bmatrix} -\sin\theta & \cos\theta\\ \cos\theta & \sin\theta \end{bmatrix}$
			NG
19. The inverse matrix a) $\begin{bmatrix} \frac{1}{2} - \frac{1}{2} \\ -4 \\ \frac{5}{2} - \frac{31}{2} \end{bmatrix}$	rix of $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$ is b) $\begin{bmatrix} \frac{1}{2} & -4 & \frac{5}{2} \\ 1 & -6 & 3 \\ 1 & 2 & -1 \end{bmatrix}$	c) $\frac{1}{2}\begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 4 & 2 & 3 \end{bmatrix}$	d) $\frac{1}{2} \begin{bmatrix} 1 & -1 & -1 \\ -8 & 6 & -2 \\ 5 & -3 & 1 \end{bmatrix}$
20. If $f(\theta) = \begin{bmatrix} \cos \theta \\ \sin \theta \\ 0 \end{bmatrix}$ a) $f(-\theta)$	$ \begin{array}{c} -\sin\theta & 0\\ \cos\theta & 0\\ 0 & 1 \end{array} , \operatorname{then} \{ f(\theta)^{-1} \} \text{ is} \\ b \} f(\theta)^{-1} $	s equal to c) $f(2\theta)$	d) None of these

2

MAHESH SIR'S NOTES - 7798364224

555 SMARTLEARN COACHING