

CLASS : XIIth DATE :

SUBJECT : MATHS DPP NO. : 3

Topic :- CONTINUITY AND DIFFERENTIABILITY

- 1. Let $f(x) = \begin{cases} 5^{1/x}, \ x < 0\\ \lambda[x], \ x \ge 0 \end{cases}$ and $\lambda \in R$, then at x = 0b) f is continuous only, if $\lambda = 0$ a) *f* is discontinuous c) f is continuous only, whatever λ may be d) None of the above If for a continuous function f, f(0) = f(1) = 0, f'(1) = 2 and $y(x) = f(e^x)e^{f(x)}$, then y'(0) is equal to 2. b) 2 d) None of these a) 1 c) 0 3. If $f(x) = \begin{cases} ax^2 - b, |x| < 1 \\ \frac{1}{|x|}, |x| \ge 1 \end{cases}$ is differentiable at x = 1, then a) $a = \frac{1}{2}, b = -\frac{1}{2}$ b) $a = -\frac{1}{2}, b = -\frac{3}{2}$ c) $a = b = \frac{1}{2}$ d) $a = b = -\frac{1}{2}$ 4. Let $f(x) = \frac{\sin 4 \pi [x]}{1 + [x]^2}$, where [x] is the greatest integer less than or equal to x, then a) f(x) is not differentiable at some points b) f'(x) exists but is different from zero c) f'(x) = 0 for all x d) f'(x) = 0 but f is not a constant function 5. The value of k which makes $f(x) = \begin{cases} \sin(1/k), x \neq 0 \\ k, x = 0 \\ c \end{pmatrix} c \text{ ontinuous at } x = 0 \text{ is } a \text{ (b) } 1 \text{ (c) } -1 \text{ (c) } a \text{ (c) } 1 \text{ (c) } a \text{ (c) } 1 \text{ (c) } a \text$ d) None of these The function $f(x) = \max[(1 - x), (1 + x), 2], x \in (-\infty, \infty)$ is 6. a) Continuous at all points b) Differentiable at all points c) Differentiable at all points except at x = 1 and x = -1 d) None of the above 7. Let f(x) be defined for all x > 0 and be continuous. Let f(x) satisfy $f\left(\frac{x}{y}\right) = f(x) - f(y)$ for all x, y and f(e) = 1. Then, a) f(x) is bounded b) $f\left(\frac{1}{x}\right) \to 0$ as $x \to 0$ c) $xf(x) \to 1$ as $x \to 0$ d) $f(x) = \ln x$
- 8. Suppose a function f(x) satisfies the following conditions for all x and y: (i) f(x + y) = f(x)f(y) (ii) $f(x) = 1 + x g(x) \log a$, where a > 1 and $\lim_{x \to 0} g(x) = 1$. Then, f'(x) is equal to

a)
$$\log a$$
 b) $\log a^{f(x)}$ c) $\log(f(x))^a$ d) None of these

9. Let g(x) be the inverse of the function f(x) and $f'(x) = \frac{1}{1+x^3}$. Then, g'(x) is equal to a) $\frac{1}{1+(g(x))^3}$ b) $\frac{1}{1+(f(x))^3}$ c) $1 + (g(x))^3$ d) $1 + (f(x))^3$

- 10. If $f(x) = |x^2 4x + 3|$, then a) f'(1) = -1 and f'(3) = 1b) f'(1) = -1 and f'(3) does not exist c) f'(1) = -1 does not exist and f'(3) = 1d) Both f'(1) and f'(3) do not exist
- 11. The points of discontinuity of tan *x* are a) $n\pi, n \in I$ b) $2n\pi, n \in I$ c) $(2n + 1)\frac{\pi}{2}, n \in I$ d) None of these
- 12. Let f(x) = ||x| 1|, then points where f(x) is not differentiable, is/(are) a) $0, \pm 1$ b) ± 1 c) 0 d) 1
- 13. $f(x) = \begin{cases} 2x, & x < 0 \\ 2x + 1, & x \ge 0 \end{cases}$ Then a) f(x) is continuous at x = 0discontinuous at x = 0d) None of the above
- 14. Let f(x) = [x] + √x [x], where [x] denotes the greatest integer function. Then,
 a) f(x) is continuous on R⁺
 b) f(x) is continuous on R
 c) f(x) is continuous on R Z
 d) None of these

15. The function $f(x) = \frac{1-\sin x + \cos x}{1+\sin x + \cos x}$ is not defined at $x = \pi$. The value of $f(\pi)$, so that f(x) is continuous at $x = \pi$, is a) -1/2 b) $\frac{1}{2}$ c) -1 d) 1

16. Let $f(x) = \begin{cases} (x-1)\sin\frac{1}{x-1}, & \text{if } x \neq 1 \\ 0, & \text{if } x = 1 \end{cases}$. Then, which one of the following is true? a) f is differentiable at x = 1 but not at x = 0

- b) *f* is neither differentiable at x = 0 nor at x = 1
- c) *f* is differentiable at x = 0 and at x = 1
- d) *f* is differentiable at x = 0 but not at x = 1

17. If
$$f(x) = \begin{cases} mx + 1, \ x \le \frac{\pi}{2} \\ \sin x + n, \ x > \frac{\pi}{2} \end{cases}$$
 is continuous at $x = \frac{\pi}{2}$, then
a) $m = 1, n = 0$ b) $m = \frac{n\pi}{2} + 1$ c) $n = \frac{m\pi}{2}$ d) $m = n = \frac{\pi}{2}$

- 18. Let f be differentiable for all x. If f(1) = -2 and $f'(x) \ge 2$ for $x \in [1, 6]$, thena) f(6) = 5b) f(6) < 5c) f(6) < 8d) $f(6) \ge 8$
- 19. If $\lim_{x \to a^+} f(x) = l = \lim_{x \to a^-} g(x)$ and $\lim_{x \to a^-} f(x) = m \lim_{x \to a^+} g(x)$, then the function f(x) g(x)a) Is not continuous at x = a

Smart DPPs

- b) Has a limit when $x \rightarrow a$ and it is equal to lm
- c) Is continuous at x = a
- d) Has a limit when $x \rightarrow a$ but it is not equal to lm

20. Let f(x) be a function satisfying f(x + y) = f(x)f(y) for all $x, y \in R$ and f(x) = 1 + x g(x) where $\lim_{x \to 0} g(x) = 1$. Then, f'(x) is equal to

a) g'(x) b) g(x) c) f(x) d) None of these

SMARTLEARN COACHING