

Class : XIth

Date :

Subject : Maths

DPP No. :3

	Topic :-Application of Derivatives						
1.	The set $\{x^3 - 12x : -3 \le$	$\leq x \leq 3$ } is equal to					
		b) $\{x: -12 \le x \le 12\}$	100	d) ${x: 0 \le x \le 10}$			
2.	If $xy = a^2$ and $S = b^2x + c^2y$ where a , b and c are constants, then the minimum value of S is						
	a) <i>abc</i>	b) $\sqrt{a} \ bc$	c) 2abc	d) None of these			
3.	Let g(x) = f(x) + f'(1)	$-x$) and $f''(x) < 0.0 \le x$	≤ 1. Then				
4.	b) $g(x)$ decreases on $[0, g(x)]$ increases on $[0, g(x)]$ increases on $[0, g(x)]$	1] 1/2] <mark>and decreases on [1</mark> /		-x			
	a) Strictly increasing in	the interval $\left(\frac{1}{2},2\right)$	b) Increasing in the inte	rval (0,∞)			
	c) Decreases in the inte	(2)	d) Strictly decreasing in	the interval $(1, \infty)$			
5.	has in (0, 1)		$a_0x^n + a_1x$				
		b) At most one zero	c) Only 3 zeros	d) Only 2 zeros			
6.	A particle is moving along the curve $x = at^2 + bt + c$. If $ac = h^2$, then the particle would be						
	moving with uniform						
	a) Rotation	b) Vel <mark>ocity</mark>	c) Acceleration	d) Retardation			
7.	The approximate value	of $(33)^{1/5}$ is					
	a) 2.0125	b) 2.1	c) 2.01	d) None of these			
8.	At an instant the diagonal of a square is increasing at the rate of 0.2cm/sec and the area is increasing at the rate of 6cm ² /sec. At that moment its side is						
	a) $\frac{30}{\sqrt{2}}$ cm	b) 30√2 cm	c) 30 cm	d) 15 cm			
9.	v —	_	etres vertically upwards i	n t seconds where $x =$			

Smart DPPs

	COACHING						
	a) 200 m	b) 125 m	c) 160 m	d) 190 m			
10.	The intercepts made by the tangent to the curve $y = \int_0^x t dt$, which is parallel to the line						
	y = 2x, on y-axis are equal to						
	a) 1, -1	b) -2,2	c) 3	$_{ m d)}$ $^{-3}$			
11.	The function $f(x) = \tan x$	x - x					
	a) Always increasesb) Always decreasesc) Never decreasesd) Some times increases	and some times decreases	S				
12.	The maximum value of <i>x</i> a) 8	y subject to $x + y = 8$, is b) 16	c) 20	d) 24			
13.	The tangent to the curve $y = 2x^2 - x + 1$ is parallel to the line $y = 3x + 9$ at the point						
	a) (3, 9)	b) (2, -1)	c) (2, 1)	d) (1, 2)			
14.	4x - 3y + 2 = 0 is given by						
	a) (2, 4)	b) $(1, \sqrt{2})$	c) $(1/2, -1/2)$	d) $(1/8, -1/16)$			
15.	If the parametric equation of a curve given by $x = e^t \cos t$, then the tangent						
	curve at the point $t = \pi/4$ makes with axis of x the angle						
	a) 0	b) π/4	c) π/3	d) $\pi/2$			
16.	All points on the curve $y^2 = 4a\left(x + a\sin\frac{x}{a}\right)$ at which the tangents are parallel to the axis of						
	lie on a a) Circle	b) Parabola	c) Line	d) None of these			
17.	The point of inflexion for the curve $y = x^{5/2}$ is						
	a) (1, 1)	b) (0, 0)	c) (1, 0)	d) (0, 1)			
18.	The minimum value of $2x + 3y$, when $xy = 6$, is						
	a) 12	b) 9	c) 8	d) 6			
19.	If $(x) = x^2 - 2x + 4$ on [1, 5], then the value of a constant c such that $\frac{f(5) - f(1)}{5 - 1} = f'(c)$, is						
	a) 0	b) 1	c) 2	d) 3			

20. Let a, b be two distinct roots of a polynomial f(x). Then there exists at least one root lying between a and b of the polynomial

a) f(x)

b) f'(x)

c) f''(x)

d) None of these

SMARTLEARN COACHING

3