

Class: XIth Subject: Maths Date: DPP No.:3

Topic :-Applications of Intergrals

	1	opicApplic	tations of interg	ı ais
1.	The area of the smaller	segment cut off from	the circle $x^2 + y^2 = 9$ by $x^2 + y^2 = 9$	$\kappa = 1$ is
	a) $\frac{1}{2}$ (9 sec ⁻¹ 3 – $\sqrt{8}$) so	ų unit	b) $(9 \sec^{-1}(3) - \sqrt{8})$	3) sq unit
	c) $(\sqrt{8} - 9 \sec^{-1} 3) \text{ sq u}$	ınit	d) None of these	
2.	The area of the region b		x and $ x + y = 1$ is	
	a) 1/3 sq unit		c) 4/3 sq unit	d)
3.			$\frac{d}{dthe line } y = mx$ in square	
	a) $\frac{5a^2}{3m}$	b) $\frac{8a^2}{2m^3}$	c) $\frac{7a^2}{}$	d)
1	3m	SIII	4111	
4.	a) 2 sq. units	b) 4 sq. units	tween the ordinates $x = 0$ c) 3 sq. units	$a, x = \pi a$
5.	The area bounded by $ x $			u)
٥.	1			- -
	a) $6\sqrt{2} + \frac{1}{2}\log 3 + 2\sqrt{2} $	2	b) $6\sqrt{2} + \frac{1}{2}\log 3 $	2√2
	c) $6\sqrt{2} - \log 3 + 2\sqrt{2} $		d) None of these	
6.	The area bounded by y	$= \log x$, x -axis and o	rdinates $x = 1, x = 2$ is	
	a) $\frac{1}{2}(\log 2)^2$	b) log(2/e)	c) log(4/e)	d)
7.	The area bounded by y	$= x^2 + 1$ and the tan	gents to it drawn from the	origin, is
	a) 8/3 sq. units	b) 1/3 sq. units	c) 2/3 sq. units	d)
8.	The area bounded by the	the x -axis, the curve y	= f(x) and the lines $x = 1$	and $x =$
	$(\sqrt{(b^2+1)}-\sqrt{2})$ for a			
	a) $\sqrt{(r-1)}$	b) $\sqrt{(x+1)}$	c) $\sqrt{(x^2+1)}$	d)
9.			$\sin^2 x$ and $y = \cos^2 x$ in the	
	a) 2 sq unit	b) $\frac{1}{2}$ sq unit	c) 1 sq unit	d)
10.	The area bounded by <i>y</i>	$= \sin^{-1} x, x = \frac{1}{\sqrt{2}} $ and		
	a) $\left(\frac{1}{\sqrt{2}} + 1\right)$ sq units		b) $\left(1-\frac{1}{\sqrt{2}}\right)$ sq uint	ts
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	c) $\frac{\pi}{4\sqrt{2}}$ sq units		d) $\left(\frac{\pi}{4\sqrt{2}} + \frac{1}{\sqrt{2}} - 1\right)$	sq units
11	The area between the c	urves $r = -2v^2$ and r	\4\2 \2 '	
	a) 4/3	b) $3/4$	c) 3/2	d)
12.	The area of the region b			/
	a) 2	b) 3	c) 4	d)
13.	The area bounded by y	= [x] and the two order	dinates $x = 1$ and $x = 1.7$	
	a) $\frac{17}{}$	b) 1	c) $\frac{17}{5}$	d)
	a) $\frac{17}{10}$		´ 5	d) -

- 14. Line x = 1 divides A enclosed by circle $x^2 + y^2 = 16$ in two portions A_1 and $A_2(A_1 > A_2)$, then $\frac{A_1}{A_2}$ is

d) None of these

- 15. The area enclosed by the curve $\frac{x^2}{25} + \frac{y^2}{16} = 1$ is
 - a) 10π sq unit
- b) 20π sq unit
- c) 5π sq unit
- d) 4π sq unit
- 16. The area of the figure bounded by the curve $|y| = 1 x^2$ is
 - a) 2/3

b) 4/3

d) -5/3

- 17. The area enclosed within the curve |x| + |y| = 1 is
 - a) 1 sq unit
- b) $2\sqrt{2}$ sq units
- c) $\sqrt{2}$ sq units
- d) 2 sq units
- a) 1 sq unit b) $2\sqrt{2}$ sq units c) $\sqrt{2}$ sq units 18. The area bounded by the parabola $y^2 = 4ax$ and $x^2 = 4ay$, is

- d) $\frac{64a^2}{3}$
- a) $\frac{1}{3}$ b) $\frac{1}{3}$ c) $\frac{1}{3}$ d) $\frac{1}{3}$ 19. The area enclosed between the curves $y = ax^2$ and $x = ay^2$ (a > 0) is 1 sq unit. Then value of a is

c) 1

- 20. The area bounded by the curves $y = x^3$ and y = x is
 - a) 1/2 sq units
- b) 1/4 sq units
- c) 1/8 sq units
- d) 1/16 sq units