

CLASS: XIIth DATE:

SUBJECT: MATHS

DPP NO.: 3

Topic:-differential equations

1. Solution of the differential equation $\frac{dy}{dx} + y \sec^2 x = \tan x \sec^2 x$ is

a)
$$y = \tan x - 1 + ce^{-\tan x}$$

b)
$$y^2 = \tan x - 1 + ce^{\tan x}$$

d) $ye^{-\tan x} = \tan x - 1 + c$

c)
$$ye^{\tan x} = \tan x - 1 + c$$

d)
$$ye^{-\tan x} = \tan x - 1 + a$$

2. The differential equation $y \frac{dy}{dx} + x = a$ (a is any constant) represents

- a) A set of circles having centre on the y –axis
- b) A set of circles on the x –axis
- c) A set of ellipses
- d) None of these

The equation of the curve for which the square of the ordinate is twice the rectangle contained by the abscissa and the intercept of the normal on x-axis and passing through (2, 1) is

a)
$$x^2 + y^2 - x = 0$$

a)
$$x^2 + y^2 - x = 0$$
 b) $4x^2 + 2y^2 - 9y = 0$ c) $2x^2 + 4y^2 - 9x = 0$ d) $4x^2 + 2y^2 - 9x = 0$

4. The general solution of $ydx - xdy - 3x^2y^2e^{x^3}dx = 0$, is equal to a) $\frac{x}{y} = e^{x^3} + C$ b) $\frac{y}{x} = e^{x^3} + C$ c) $xy = e^{x^3} + C$ d) $xy = e^x + C$

a)
$$\frac{x}{y} = e^{x^3} + C$$

$$b)\frac{y}{x} = e^{x^3} + C$$

c)
$$xy = e^{x^3} + C$$

$$d) xy = e^x + C$$

5. The solution of $\frac{dy}{dx} = \frac{ax+h}{by+k}$ represents a parabola, when

a)
$$a = 0, b = 0$$

b)
$$a = 1, b = 2$$

c)
$$a = 0, b \neq 0$$

b)
$$a = 1, b = 2$$
 c) $a = 0, b \neq 0$ d) $a = 2, b = 1$

6. The differential equation of all ellipses centred at the origin is

a)
$$y_2 + x y_1^2 - y y_1 = 0$$

b)
$$xy y_2 + x y_1^2 - y y_1 = 0$$

c)
$$y y_2 + x y_1^2 - x y_1 = 0$$

d) None of these

7. If $y = ax^{n+1}$, then $x^2 \frac{d^2y}{dx^2}$ is equal to

a)
$$n(n-1)$$

b)
$$n(n+1)y$$

d)
$$n^2 v$$

8. The differential equation of the family of curves $y = a \cos(x + b)$ is

a)
$$\frac{d^2y}{dx^2} - y = 0$$

b)
$$\frac{d^2y}{dx^2} + y = 0$$

a)
$$\frac{d^2y}{dx^2} - y = 0$$
 b) $\frac{d^2y}{dx^2} + y = 0$ c) $\frac{d^2y}{dx^2} + 2y = 0$

9. If y(t) is a solution of $(1+t)\frac{dy}{dt} - ty = 1$ and y(0) = -1, then y(1) is equal to

a)
$$-\frac{1}{2}$$

b)
$$e + \left(\frac{1}{2}\right)$$

c)
$$e - \frac{1}{2}$$

d)
$$\frac{1}{2}$$

10. The integrating factor of the differential equation
$$\frac{dy}{dx} + \frac{y}{(1-x)\sqrt{x}} = 1 - \sqrt{x}$$
 is

a)
$$\frac{1-\sqrt{x}}{1+\sqrt{x}}$$

b)
$$\frac{1+\sqrt{x}}{1-\sqrt{x}}$$

c)
$$\frac{1-x}{1+x}$$

d)
$$\frac{\sqrt{x}}{1-\sqrt{x}}$$

The solution of the differential equation $(x^2 + y^2)dx = 2xy dy$ is (herec is an arbitrary constant)

a)
$$x^2 + y^2 = cy$$

b)
$$c(x^2 - y^2) = x$$
 c) $x^2 - y^2 = cy$ d) $x^2 + y^2 = cx$

c)
$$x^2 - y^2 = cy$$

$$d) x^2 + y^2 = cx$$

12. The real value of n for which the substitution $y = u^n$ will transform the differential equation $2x^4y\frac{dy}{dx} + y^4 = 4x^6$ into a homogenous equation is

13. The differential equation satisfied by the family of curves $y = ax \cos\left(\frac{1}{x} + b\right)$ where a, b are parameters is

a)
$$x^2y_2 + y = 0$$

b)
$$x^4y_2 + y = 0$$

$$c) xy_2 - y = 0$$

d)
$$x^4y_2 - y = 0$$

14. The solution of the differential equation $\frac{dy}{dx} = x \log x$ is

a)
$$y = x^2 \log x - \frac{x^2}{2} + c$$

b)
$$y = \frac{x^2}{2} \log x - \frac{x^2}{4} + c$$

c)
$$y = \frac{x^2}{2} + \frac{x^2}{2} \log x + c$$

15. Differential equation of $y = \sec(\tan^{-1} x)$ is

a)
$$(1+x^2)\frac{dy}{dx} = y + x$$
 b) $(1+x^2)\frac{dy}{dx} = y - x$ c) $(1+x^2)\frac{dy}{dx} = xy$ d) $(1+x^2)\frac{dy}{dx} = \frac{x}{y}$

b)
$$(1+x^2)\frac{dy}{dx} = y - x$$

c)
$$(1+x^2)\frac{dy}{dx} = xy$$

$$d) (1+x^2) \frac{dy}{dx} = \frac{x}{y}$$

16. Solution of the differential equation $\frac{dy}{dx} \tan y = \sin(x+y) + \sin(x-y)$ is a) $\sec y + 2\cos x = c$ b) $\sec y - 2\cos x = c$ c) $\cos y - 2\sin x = c$ d) $\tan y - 2\sec x = c$

a)
$$\sec y + 2\cos x = 0$$

b)
$$\sec y - 2\cos x = a$$

c)
$$\cos y - 2\sin x = a$$

d)
$$tan y - 2 sec x = c$$

17. The differential equation of the family of parabolas with focus at the origin and the x-axis as axis, is

a)
$$y \left(\frac{dy}{dx}\right)^2 + 4x \frac{dy}{dx} = 4y$$

b)
$$-y \left(\frac{dy}{dx}\right)^2 = 2x \frac{dy}{dx} - y$$

c)
$$y \left(\frac{dy}{dx}\right)^2 + y = 2xy\frac{dy}{dx}$$

b)
$$-y \left(\frac{dy}{dx}\right)^2 = 2x \frac{dy}{dx} - y$$

d) $y \left(\frac{dy}{dx}\right)^2 + 2xy \frac{dy}{dx} + y = 0$

18. The integrating factor of the differential equation $\frac{dy}{dx} + y = \frac{1+y}{x}$, is a) $\frac{x}{e^x}$ b) $\frac{e^x}{x}$ c) $x e^x$ d) e^x

a)
$$\frac{x}{e^x}$$

b)
$$\frac{e^x}{x}$$

d)
$$e^x$$

19. The differential equation of all coaxial parabola $y^2 = 4a(x - b)$, where a and b are arbitrary constants, is

a)
$$y \frac{d^2y}{dx^2} + \frac{dy}{dx} = 1$$

a)
$$y \frac{d^2y}{dx^2} + \frac{dy}{dx} = 1$$
 b) $y \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 1$ c) $y \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 0$ d) $y \frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$

c)
$$y \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2$$

d)
$$y \frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$$

20. If $\frac{d^2y}{dx^2}\sin x = 0$, then the solution of differential equation is
a) $y = \sin x + cx + d$ b) $y = \cos x + cx^2 + d$ c) $y = \tan x + c$ d)

a)
$$y = \sin x + cx + d$$

$$y = 0$$

$$y = \cos x + cx^2 + d$$

$$y = \tan x + c$$

$$y =$$

 $\log \sin x + cx$