

R		S	mart DPPs
SMARTLEARN			
a) -21	b) $-\frac{21}{2}$	c) 21	d) $\frac{21}{2}$
12. If \hat{a} , \hat{b} , \hat{c} are three unit vectors such that \hat{b} and \hat{c} are non-parallel and $\hat{a} \times (\hat{b} \times \hat{c}) = \frac{1}{2}\hat{b}$, then the angle			
between \hat{a} and \hat{c} is a) 30°	b) 45°	c) 60°	d) 90°
13. If the vectors $3\hat{i}$ a) -14	$(+\lambda \hat{j} + \hat{k} \text{ and } 2\hat{i} - \hat{j} + 8\hat{k})$ b) 7	\hat{k} are perpendicular, then c) 14	n λ is equal to d) $1/7$
14. The equation of the plane perpendicular to the line $x - 1$ $y - 2$ $z + 1$			
$\frac{x-1}{1} = \frac{y-2}{-1} = \frac{z+1}{2}$ and passing through the point(2,3,1) is			
a) $\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}})$	$) = 1$ b) $\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}})$	$\mathbf{r} = 1$ c) $\mathbf{\vec{r}} \cdot (\mathbf{\hat{i}} - \mathbf{\hat{j}} + 2\mathbf{\hat{k}})$	$) = 7$ d) $\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} + \hat{\mathbf{j}} - 2\hat{\mathbf{k}}) = 10$
	$(\vec{c} - \vec{a})$ is equal to		
a) 2 $\vec{a} \cdot \vec{b} \times \vec{c}$	b) $\vec{a} \cdot \vec{b} \times \vec{c}$	c) 0	d) $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}$
16. If \hat{n}_1, \hat{n}_2 are two unit vectors and θ is the angle between them, then $\cos \theta/2 =$			
a) $\frac{1}{2} \hat{n}_1 + \hat{n}_2 $	b) $\frac{1}{2} \hat{n}_1 - \hat{n}_2 $	c) $\frac{1}{2}(\hat{n}_1.\hat{n}_2)$	d) $\frac{ \hat{n}_1 \times \hat{n}_2 }{2 \hat{n}_1 \hat{n}_2 }$
17. Let <i>ABCD</i> be the parallelogram whose sides <i>AB</i> and <i>AD</i> are represented by the vectors $2\hat{i} + 4\hat{j} - 5\hat{k}$			
and $\hat{i} + 2\hat{j} + 3\hat{k}$ respectively. Then if \vec{a} is a unit vector parallel to \overrightarrow{AC} , then \vec{a} is equal to			
a) $(3\hat{i} - 6\hat{j} - 2\hat{k})$)/3 b) $(3\hat{i} + 6\hat{j} + 2\hat{k})$)/3 c) $(3\hat{i} - 6\hat{j} - 3\hat{k})$	$\frac{1}{7}$ d) $(3\hat{i} + 6\hat{j} - 2\hat{k})/7$
18. If the points with position vectors $60\hat{i} + 3\hat{j}$, $40\hat{i} - 8\hat{j}$ and $a\hat{i} - 52\hat{j}$ are collinear, then a is equal to			
a) —40	b) -20	c) 20	d) 40
19. If \vec{a} , \vec{b} , \vec{c} are three non-coplanar vectors such that $\vec{a} + \vec{b} + \vec{c} = \alpha \vec{d}$ and $\vec{b} + \vec{c} + \vec{d} = \beta \vec{a}$, then $\vec{a} + \vec{b} + \vec{c}$			
$\vec{c} + \vec{d}$ is equal to a) $\vec{0}$	b) ard	c) β <i>b</i>	$d(\alpha + \beta)\vec{a}$
	b) αā		d) $(\alpha + \beta)\vec{c}$
20. The unit vector perpendicular to $\hat{\mathbf{i}} - \hat{\mathbf{j}}$ and coplanar with $\hat{\mathbf{i}} + 2\hat{\mathbf{j}}$ and $\hat{\mathbf{i}} + 3\hat{\mathbf{j}}$ is			
a) $\frac{2\hat{i}-5\hat{j}}{\sqrt{29}}$	b) 2î + 5ĵ	c) $\frac{1}{\sqrt{2}}(\hat{\mathbf{i}}+\hat{\mathbf{j}})$	d) $\hat{\mathbf{i}} + \hat{\mathbf{j}}$
			ING