

DPP DAILY PRACTICE PROBLEMS				
CLASS : XIIth DATE :			SUBJECT : MATHS DPP NO. : 3	
		C :- PROBABILITY		
	. –			
 Three integers are cl product is a multiple of 3 a) 194/285 		the set of first 20 natura	al numbers. The chance that their d) 3/4	
a) 194/203	b) 1/3/	0 13/19	uj 5/4	
die is picked up and rolle	d. Because of some sec air die and a 25 <mark>% cha</mark>	cret magnetic attraction ace of picking a fair die.	e other has two 1's , and two 5's. A of the unfair die, there is 75% The die is rolled and shows up the	
a) 1/7	b) 1/4	c) 1/6	d) 1/24	
 A problem in mather the problem is 1/2, 1/3 a a) 3/4 			eir respective probability of solving is d) 1/3	
4. A fair die is thrown 2 a) ${}^{20}C_{10} \times 5^6/6^{20}$		ity that on the 10^{th} throw c) $84 \times 5^6/6^{10}$	w, the fourth six appears is d) None of these	
same plane. Mr. A can go possible paths are equall for any event must be co	to h <mark>is office travelling</mark> y likely then the proba nsidered)	one black at a time eith bility that Mr. A passed	5). His friend lives at (2,3) on the er in the $+y$ or $+x$ direction. If all his friends house is (shortest path	
a) 1/2	b) 10/21	c) 1/4	d) 11/21	
5. There are two urns A	<mark>l and B</mark> . Urn A contain	s 5 red, 3 blue and 2 wh	ite ba <mark>lls, urn <i>B</i> c</mark> ontains 4 red, 3 blu	
and 3 white balls. An urn a) 9/10			bability that the ball drawn is red is d) 9/20	
a) 9/10	b) 1/2	c) 11/20	0, 9/20	
_			es not get any two consecutive	
butcomes same for atleas a) $\frac{m+2}{2^{2n}+1}$	b) $\frac{2n+2}{2^{2n}}$	the probability that playe c) $\frac{2n+2}{2^{2n+1}}$	er wins the game is d) $\frac{m+2}{2^{2n}}$	
3. Let <i>A</i> and <i>B</i> be event	c Suppose P(A) = 0.4	D(R) = n and $D(D + R)$) = 0.7. The value of p for which A	
and <i>B</i> are independent is a) 1/3		$(P \cup B) = p \text{ and } P(P \cup B)$ c) 1/2	d) $1/5$	
9. If <i>a</i> and <i>b</i> are chosen Then the probability that	-	_	1, 2, 3, 4, 5, 6 with replacement.	
a) 1/3	b) 1/4	c) 1/9	d) 2/9	

MAHESH SIR'S NOTES - 7798364224

SIL	ian	DF	PS

10. Four die are thrown simultaneously. The probability that 4 and 3 appear on two of the die given that 5 and 6 have appeared on other two die is

a) 1/6	b) 1/36	c) 12/151	d) None of these

11. Cards are drawn one by one without replacement from a pack of 52 cards. The probability that 10 cards will precede the first ace is

	a) 241/1456	b) 164/4165	c) 451/884	d) None of these
--	-------------	-------------	------------	------------------

12. Forty teams play a tournament. Each team plays every other team just once. Each game result in a win for one team. If each team has a 50% chance of winning each game, the probability that at the end of the tournament, every team has won a different number of games is

a) 1/780	b) 40!/2 ⁷⁸⁰	c) 40!/3 ⁷⁸⁰	d) None of these

13. 2n boys are randomally divided into two subgroups containing n boys each. The probability that the two tallest boys are in different groups is

a) n/(2n-1) b) (n-1)/(2n-1) c) $(n-1)/(4n^2)$ d) None of these

14. The probability of solving a question by three students are 1/2, 1/4, 1/6 respectively. Probability of question being solved will be

	a) 33/48	b) 35/48	c) 31/48	d) 37/48
--	----------	----------	----------	----------

- 15. A fair coin is tossed 10 times. Then the probability that two heads do not occurs consecutively isa) 7/64b) 1/8c) 9/16d) 9/64
- 16. If A and B each toss three coins. The probability that both get the same number of heads is
a) 1/9b) 3/16c) 5/16d) 3/8

17. A draws a card from a pack of *n* cards marked 1, 2, ... *n*. The card is replaced in the pack and *B* draws a card. Then the probability that *A* draws a higher card than *B* is

a) $(n + 1)2n$	b) 1/2	c) $(n-1)/2n$	d) None of these
----------------	--------	---------------	------------------

18. All the jacks, queens, kings and aces of a regular 52 cards deck are taken out. The 16 cards are thoroughly shuffled and my opponent, a person who always tells the truth, simultaneously draws two cards at random and says, 'I hold at least one ace'. The probability that he holds two aces is

a) 2/8
b) 4/9
c) 2/3
d) 1/9

19. The probability of winning a race by three persons *A*, *B* and *C* are 1/2, 1/4, and 1/4, respectively. They run two races. The probability of *A* winning the second race when *B* wins the first race is

a) 1/3
b) 1/2
c) 1/4
d) 2/3

20. A composite number is selected at random from the first 30 natural numbers and it is divided by 5. The probability that there will be a remainder is

a) 14/19	b) 5/19	c) 5/6	d) 7/15