

CLASS : XIIth **DATE:**

SUBJECT : CHEMISTRY DPP NO. :3

Topic :-HALOALKANES AND HALOARENES

(d) 2

The density order is: Iodine > Bromide > Chloride > Fluoride.

Higher is the molecular weight, more is b.p, m.p.

3 (b)

 $4C_2H_5Br + 4Na - Pb \rightarrow (C_2H_5)_4Pb + 4NaBr$

7 (c)

Follow iodoform test.

8 (a)

Chloral + Chlorobenzene \rightarrow DDT

 $CH_3C \equiv CNa + (CH_3)_2 CHCl \rightarrow CH_3C \equiv CCH(CH_3)_2 + NaCl$

Solvolysis of haloalkanes follows first order kinetics. During this process an intermediate carbocation is formed. Therefore, the halohydrocarbon which gives more stable carbocation undergoes solvolysis readily. 13 (d)

 CCl_4 is a covalent compound, therefore, it does not ionise to give Cl^- ions hence, it does not give white ppt. of AgCl when treated with AgNO₃ soution. There is no reaction to evolve NO₂. CCl₄ will form a separate layer as it is immiscible with water.

14 (a)

C - X bond in benzyl bromide is much weaker than in vinyl bromide and bromobenzene since the benzyl cation left after the removal of the bromide ion is stabilized by resonance. Further, C-Br is weaker than C-Cl bond. Therefore, $C_6H_5CH_2Br$ has the weakest C-X bond.

^{Cl₂}→ five types of monochlorinated compounds 1. 2-methylpentane-

- $\xrightarrow{Cl_2}$ four types of monochlorinated compounds 2. 3-methylpentane-
- $\xrightarrow{Cl_2} \text{three types } \dots$ 2, 2-dimethylbutane-3.
- 2, 3-dimethylbutane $\xrightarrow{Cl_2}$ two types 4.
- n-hexane $\xrightarrow{Cl_2}$ three types 5.

16 (c)

Ethanol on reaction with bleaching powder, gives chloroform (trichloromethane). $CaOCl_2 + H_2O \rightarrow Ca(OH)_2 + Cl_2$ $C_2H_5OH + Cl_2 \rightarrow CH_3CHO + 2HCl$ $CH_{3}CHO + 3Cl_{2} \rightarrow CCl_{3}.CHO + 3HCl$ 2CCl_3 . CHO + Ca(OH)₂ $\xrightarrow{\text{Chloral}}$ 2CHCl_3 + (HCOO)₂Ca chloroform

17 (c) $C_2H_5ONa + C_2H_5I \rightarrow C_2H_5OC_2H_5 + NaI;$ Williamson's synthesis. 18 (c) $CH_3Br + KCN(alc.) \rightarrow CH_3CN \xrightarrow{Reduction}_{NaC_2H_5OH} CH_3CH_2NH_2$ ethylamine

19 (d)

Ethyl chloride can be converted into ethanol either by its alkaline hydrolysis or by its reaction with moist AgOH.

$$C_2H_5Cl \xrightarrow{Aq.NaOH}{\Delta} C_2H_5OH \xleftarrow{AgOH}{} C_2H_5Cl (B)$$

20 **(d)**

 $CH_3CH_2CH_2CH_2OH \xrightarrow{P+Br_2} CH_3CH_2CH_2CH_2Br$ reduction of alkyl halide with Na

				A	NSWER	-KEY				
Q.	1	2	3	4	5	6	7	8	9	10
A.	С	D	B	Α	С	C	С	A	Α	A
				1				- 74		
Q.	11	12	13	14	15	16	17	18	19	20
А.	D	A	D	A	С	С	С	С	D	D
	1								6	
				100	10					1