

5

In adjoining loops of spring, the current being in the same direction, there will be attraction. Due to which the spring gets compressed.

6

(d)

(a)

(a)

(b)

(c)

The minimum value of magnetic field

$$B = \frac{F}{qv \sin 90^{\circ}}$$

= $\frac{10^{-10}}{10^{-12} \times 10^{5}} = 10^{-3} \text{ T in } z - \text{direction}$

$$r = \frac{mv}{Bq} = \frac{\sqrt{2E_km}}{Bq}$$

= $\frac{\sqrt{2 \times 6 \times 10^{-16} \times 9 \times 10^{-31}}}{6 \times 10^{-3} \times 1.6 \times 10^{-19}}$
On solving $r = 3.42$ cm.

8

In the following figure, magnetic fields at O due to section 1, 2, 3 and 4 are considered as B_1 , B_2 , B_3 and B_4 respectively

$$B_{1} = B_{3} = 0$$

$$B_{2} = \frac{\mu_{0}}{4\pi} \cdot \frac{\pi i}{R_{1}} \otimes$$

$$B_{4} = \frac{\mu_{0}}{4\pi} \cdot \frac{\pi i}{R_{2}} \odot \text{ As } |B_{2}| > |B_{4}|$$
So $B_{net} = B_{2} - B_{4} \Rightarrow B_{net} = \frac{\mu_{0}i}{4} \left(\frac{1}{R_{1}} - \frac{1}{R_{2}}\right) \otimes$

$$A$$

9

Here, i = 4A; V = 20 Volt; so,

 $R = \frac{V}{I} = \frac{20}{4} = 5$ A. Since, voltmeter is connected in parallel with resistance *R*, the effective resistance of this combination is 5 Ω only if the resistance *R* is greater than 5 Ω , since total resistance in parallel combination becomes less than individual resistance. (a)

10

Here, $2l = 3 \text{ cm}; d_1 = 24 \text{ cm}, d_2 = 48 \text{ cm}.$ As the magnet is short, $\frac{B_1}{B_2} = \frac{d_2^3}{d_1^3} = \left(\frac{48 \text{ cm}}{24 \text{ cm}}\right)^3 = 8$

Force on wire *C* due to wire *D*.

$$F_{1} = \frac{\mu_{0}}{2\pi} \frac{l_{1}l_{2}}{r} l \qquad (repulsive)$$

$$= 2 \times 10^{-7} \times \frac{30 \times 10}{3 \times 10^{-2}} \times 25 \times 10^{-2}$$

$$= 2 \times 10^{-7} \times 2500 = 5 \times 10^{-4} \text{ N}$$
Force on wire *C* due to wire *G*

$$F_{2} = \frac{\mu_{0}}{2\pi} \frac{l_{1}l_{2}}{r} l \qquad (repulsive)$$

$$= \frac{2 \times 10^{-7} \times 10 \times 20}{2 \times 10^{-2}} \times 25 \times 10^{-2}$$

$$= 2 \times 10^{-7} \times 2500 = 5 \times 10^{-4} \text{ N}$$
Net force = $F_{1} - F_{2} = 5 \times 10^{-4} \text{ N} - 5 \times 10^{-4} \text{ N} = 0$

12

From Biot-Savart's law the magnetic field (*B*) due to a conductor carrying current *I*, at a distance r_1 is

$$B_1 = \frac{\mu_0 I_1}{2\pi r_1}$$

(b)

Magnetic field at *P* due to current in second conductor is

$$B_2 = \frac{\mu_0 I_2}{2\pi (r_1 + d)}$$

From Fleming's right hands rule the fields at *P* are directed opposite.

 $\therefore \text{ Resultants, field } B_1 = B_2$

$$\therefore \quad \frac{\mu_0 I_1}{2\pi r_1} = \frac{\mu_0 I_2}{2\pi (r_1 + d)}$$

Given, $I_1 = 10 \text{ A}, r_1 = 5, r_1 + d = 5 + 10 = 15 \text{ cm}$

$$\therefore \quad I_2 = \frac{I_1}{r_1} \times (r_1 + d)$$

$$I_2 = \frac{10}{5} \times 15 = 30 \text{ A}$$

10 A

5 cm

13

(b)

When two infinitely long parallel conductors carrying currents i_1 and i_2 are placed a distance r apart, then force on the unit length of a conductor due to the other conductor is given by

$$F = \frac{\mu_0}{4\pi} \frac{2\iota_1 \iota_2}{r}$$

Here, $i_1 = i_2 = i$ and $r = b$
 $\therefore F = \frac{\mu_0 i^2}{2\pi b}$
(d)

14

The field at *O* due to *AB* is $\frac{\mu_0}{4\pi} \cdot \frac{i}{a} \hat{k}$ and that due to *DE* is also $\frac{\mu_0}{4\pi} \cdot \frac{i}{a} \hat{k}$ However the field due t *BCD* is $\frac{\mu_0}{4\pi} \cdot \frac{i}{a} \left(\frac{\pi}{2}\right) \hat{k}$ Thus the total field at *O* is $\frac{\mu_0}{4\pi} \cdot \frac{i}{a} \left(2 + \frac{\pi}{2}\right) \hat{k}$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		

Smart DPPs

А.	C	D	С	В	А	D	А	А	В	Α
Q.	11	12	13	14	15	16	17	18	19	20
A.	С	В	В	D	В	В	D	А	D	А

SMARTLEARN COACHING