

Smart DPPs

At t = 0, phase of the voltage is zero, while phase of the current is $-\frac{\pi}{2}$, *i.e.*, voltage leads by $\frac{\pi}{2}$

8 $Z^2 = R^2 + (2\pi fL)^2$ $= (30)^2 + \left(2\pi \times 50 \times \frac{0.4}{\pi}\right)^2$ = (900 + 1600) = 2500 $Z = 50 \Omega$ $I = \frac{V}{Z} = \frac{200}{50} = 4 \text{ A}$ or Also, 10 (b) We know that Q-factor of series resonant circuit is given as $Q = \frac{\omega_r L}{R}$ Here, L = 8.1 mH, $C = 12.5 \mu\text{F}$, $R = 10\Omega$, f = 500 Hz $Q = \frac{\omega_r L}{R} = \frac{2\pi f L}{R}$ $= \frac{2 \times \pi \times 500 \times 8.1 \times 10^{-3}}{10} = \frac{8.1\pi}{10} = 2.5434$ 11 (b) For capacitive circuits $X_C = \frac{1}{\omega C}$ $\therefore i = \frac{V}{X_c} = V\omega C \implies i \propto \omega$ 12 $V_0 = \sqrt{2} V_{rms} = 10\sqrt{2}$ 13 In L-R circuit, the growing current at time *t* is given y $i = i_0 \left[1 - e^{-\frac{t}{\tau}}\right]$ where $i_0 = \frac{E}{R}$ and $\tau = \frac{L}{R}$ $\therefore \text{ Charge passed through the battery in one time constant is} q = \int_0^\tau i dt = \int_0^\tau i_0 (1 - e^{-t/r}) dt$ $q = i_0 \tau - \left[\frac{i_0 e^{-t}}{-2/\tau}\right]_0^t = i_0 \tau + i_0 \tau [e^{-1} - 1]$ $= i_0 \tau - i_0 \tau + \frac{i_0 \tau}{e}$ $q = \frac{i_0 \tau}{e} = \frac{(E/R)(L/R)}{e} = \frac{el}{eR^2}$ 14 $P_i = 240 \times 0.7 = 168 \text{ W}, P_0 = 140 \text{ W}$ $\eta = \frac{P_0}{P_i} \times 100 = \frac{140}{168} \times 100 \approx 80\%$ 15 (c) Energy stored in a inductor *L* carrying Current *i* is $U = \frac{1}{2} L i^2$ Rate at which energy is stored = $\frac{dU}{dt} = \frac{1}{2} L 2i \left(\frac{di}{dt}\right) = Li \left(\frac{di}{dt}\right)$ At $t = 0, i = 0, \qquad \therefore \frac{dU}{dt} = 0$ At $t = \infty, i = i_0$ (constant), $\therefore \frac{di}{dt} = 0$ 16 (d) Required time $t = T/4 = \frac{1}{4 \times 50} = 5 \times 10^{-3} sec$ 17 (a) Maximum voltage is AC circuit $V_0 = 282 V$

$V = \frac{V_0}{\sqrt{2}} = \frac{282}{\sqrt{2}}$ $V = \frac{282}{1.41} = \frac{28200}{141}$ V = 200 V(b)

(b) $X_C = \frac{1}{2\pi v C} = \frac{1}{0} = \infty$ (b) $Z = \sqrt{R^2 + X_L^2} = \sqrt{10^2 + (2\pi \times 60 \times 2)^2} = \frac{1}{2\pi v C}$

$$Z = \sqrt{R^2 + X_L^2} = \sqrt{10^2 + (2\pi \times 60 \times 2)^2} = 753.7$$

$$\therefore i = \frac{120}{753.7} = 0.159 A$$

20

(b)

18

19

An alternating current is one whose magnitude changes continuously with time between zero and a maximum value and whose direction reverses periodically. The relation between frequency (f) and time (T) is.

IISING

Smart DPPs

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
А.	В	С	В	А	D	А	В	D	D	В
Q.	11	12	13	14	15	16	17	18	19	20
А.	В	В	А	В	С	D	А	В	В	В

SMARTLEARN COACHING