

Formula
$$
\frac{1}{\lambda} = RZ^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)
$$

\nFor K_α line, $n_1 = 1$ and $n_2 = 2$
\n $\therefore \frac{1}{\lambda} = RZ^2 \left(\frac{3}{4} \right) \Rightarrow Z = \left(\frac{4}{3R\lambda} \right)^{1/2}$
\n $= \left[\frac{4}{3(1.097 \times 10^7 m^{-1})(0.76 \times 10^{-10} m)} \right]^{1/2} = 39.99 \approx 40$

4 **(d)**

 $\Delta\lambda=\lambda_{K_\alpha}-\lambda_{\rm min}$ When V is halved $\lambda_{\rm min}$ becomes two time but λ_{K_α} remains the same. ∴ $\Delta \lambda' = \lambda_{K_{\alpha}} - 2\lambda_{\min} = 2(\Delta \lambda) - \lambda_{K_{\alpha}}$ \therefore Δλ' < 2(Δλ)

5 **(c)**

 X -rays are electromagnetic waves of wavelength ranging from 0.1 to 100Å

6 **(d)**

(d)
\n
$$
qE = mg
$$
 ...(i)
\n $\frac{4}{3}\pi r^3$ pg = mg ...(ii)
\n $r = \left(\frac{3mg}{4\pi\rho g}\right)^{1/3}$...(iii)
\nSubstituting the value of r in Eq. (ii), we get
\n $6\pi\eta v \left(\frac{3mg}{4\pi\rho g}\right)^{1/3} = mg$
\nor
\n $(6\pi\eta v)^3 \left(\frac{3mg}{4\pi\rho g}\right) = (mg)^3$
\nAgain substituting $mg = qE$, we get
\n $(qE)^2 = \left(\frac{3}{4\pi\rho g}\right) (6\pi\eta v)^3$
\nOr
\n $qE = \left(\frac{3}{4\pi\rho g}\right)^{1/2} (6\pi\eta g)^{3/2}$
\n \therefore $q = \frac{1}{E} \left(\frac{3}{4\pi\rho g}\right)^{\frac{1}{2}} (6\pi\eta v)^{3/2}$

ma

Substituting the values, we get

$$
q = \frac{7}{81\pi \times 10^5} \sqrt{\frac{3}{4\pi \times 900 \times 9.8} \times 216\pi^3}
$$

$$
\times \sqrt{(1.8 \times 10^{-5} \times 2 \times 10^{-3})^3} = 8.0 \times 10^{-19} \text{ C}
$$

7 **(c)**

$$
K.E. = 2 E_0 - E_0 = E_0 \text{ (for } 0 \le x \le 1) \Rightarrow \lambda_1 = \frac{h}{\sqrt{2mE_0}}
$$

$$
K.E. = 2E_0 \text{ (for } x > 1) \Rightarrow \lambda_2 = \frac{h}{\sqrt{4mE_0}} \Rightarrow \frac{\lambda_1}{\lambda_2} = \sqrt{2}
$$

8 **(c)**

Among the given metals, aluminium thermionically emits an electron at a relatively lowest temperature

9 **(c)**

Speed obtained by the particle after falling through a potential difference of V volt is

 $v_A = \sqrt{\frac{2Vq}{m}}$ $\frac{w_i}{m}$... (*i*) And $v_B = \sqrt{\frac{2V \times 4q}{m}}$ $\frac{\lambda + q}{m}$...(ii) Now dividing Eq. (i) by Eq. (ii), we get v_A $\frac{v_A}{v_B} = \sqrt{\frac{1}{4}}$ $\frac{1}{4} = \frac{1}{2}$ 2 So, $v_A: v_B = 1: 2$

$$
10\quad
$$

$$
\begin{array}{c}\n\textbf{(a)}\\ \n\frac{u_1}{\cdots} = \n\end{array}
$$

$$
\overline{u_2} - \overline{2}
$$

1

Accelerations of cathode rays in electric field, $\vec{a} = \frac{eE}{m}$ m

It is same for both the cathode rays As displacement, $s = ut + \frac{1}{3}$ $rac{1}{2}at^2$ So for a given value of α and $t, s \times u$ $\text{So, } \frac{s_1}{s_2}$ $rac{s_1}{s_2} = \frac{u_1}{u_2}$ 1

 $\frac{u_1}{u_2}$ =

2

11 **(b)**

Here, $\lambda_0 = 200$ nm; $\lambda = 100$ nm; $hc/e = 1240$ eV nm maximum KE $=$ $\frac{hc}{\lambda e} - \frac{hc}{\lambda_0 e}$ $\frac{hc}{\lambda_0 e}$ (in eV) = hc $\frac{1}{e}$ 1 $\frac{1}{\lambda}$ – 1 $\frac{1}{\lambda_0}$ $= 1240$ (1 $\frac{1}{100}$ – 1 $\frac{1}{200}$ $= 6.2 \text{ eV}$

12 **(c)**

According to J. J. Thomson's cathode ray tube experiment the e/m of electrons is much greater than thee/ m of protons.

 \overline{C}

14 **(b)**

Maximum KE=
$$
\frac{hc}{\lambda}
$$
 - ϕ_0
= $\frac{6.6 \times 10^{-34} \times 3 \times 10^8}{400 \times 10^{-10}} \times \frac{1}{1.6 \times 10^{-19}} - 2 = 1.1 \text{ eV}$

15 **(c)**

 $\lambda = \frac{h}{\sqrt{2\pi}}$ $\frac{h}{\sqrt{2mE}} = \frac{h}{\sqrt{2n}}$ $\frac{h}{\sqrt{2m}} \cdot \frac{1}{\sqrt{l}}$ $\frac{1}{\sqrt{E}}$. Taking log of both sides $\log \lambda = \log$ ℎ √2m + log 1 \sqrt{E} \Rightarrow log $\lambda = \log$ ℎ $\sqrt{2m}$ − 1 $\frac{1}{2} \log E$ \Rightarrow log $\lambda = -$ 1 $\frac{1}{2} \log E + \log$ \boldsymbol{h} $\sqrt{2m}$

This is the euation of straight line having slope (-1/2) and positive intercept on log λ axis

16 **(b)**

Cut-off wavelength depends on the applied voltage not on the atomic number of the target. Characteristic wavelengths depends on the atomic number of target.

17 **(c)**

For k_{α} emission transition L shell to $k -$ shell For k_β emission transition *M* shell to $k -$ shell For L_{α} emission transition *M* shell to L – shell $E_M - E_K = (E_M - E_L) + (E_L - E_K)$ \Rightarrow $hf_2 = hf_3 + hf_1 \Rightarrow f_2 = f_1 + f_3$

18 **(a)**

Number of photons emitted per second $n=$ \overline{p} $\frac{r}{h\nu}$ = 10×10^{3} $\frac{16 \times 10}{6.6 \times 10^{-34} \times 880 \times 10^3} = 1.72 \times 10^{31}$

19 **(a)**

$$
p = \frac{h}{\lambda} = \frac{6.6 \times 10^{-34}}{4400 \times 10^{-10}} = 1.5 \times 10^{-27} kg \cdot m/s
$$

and mass $m = \frac{p}{c} = \frac{1.5 \times 10^{-27}}{3 \times 10^8} = 5 \times 10^{-36} kg$

$$
20\,
$$

$$
\lambda = \frac{h}{p} = \frac{h}{mv}
$$

20 **(a)**

Smart DPPs

SMARTLEARN COACHING