

$$r = \frac{a\sqrt{3}}{4} = \frac{3.6\sqrt{3}}{4} = 1.56 \text{ Å}$$
(b)
In figure 2, 4 and 5 *P*-crystals are more positive as compared to *N*-crystals
(c)
In space charge limited region, the plate current is given by Child's law $i_n = 1.56 \text{ Å}$

ate current is given by Child's law $i_p = KV_p^{3/2}$

Thus,
$$\frac{i_{p2}}{i_{p1}} = \left(\frac{V_{p2}}{V_{p1}}\right)^{3/2} = \left(\frac{600}{150}\right)^{3/2} = (4)^{3/2} = 8$$

Or $i_{n2} = i_{n1} \times 8 = 10 \times 8 \ mA = 80 \ mA$

17 (d)

In transistor emitter is heavily doped and base is lightly doped.

So, $D_e > D_c > D_b$

18

15

16

(a) At $V_g = -3V$, $V_p = 300 V$ and $I_p = 5mA$ At $V_q = -1V$, for constant plate current *i.e.*, $I_p = 5mA$ From $I_p = 0.125 V_p - 7.5$ $\Rightarrow 5 = 0.125 V_p - 7.5 \Rightarrow V_p = 100V$ \therefore change in plate voltage $\Delta V_p = 300 - 100 = 200V$ Change in grid voltage $\Delta V_g = -1 - (-3) = 2V$ So, $\mu = \frac{\Delta V_p}{\Delta V_g} = \frac{200}{2} = 100$

(c)

 $I_c = I_e - I_b = 90 - 1 = 89$ mA.

	ANSWER-KEY									
Q.	1	2	3	4	5	6	7	8	9	10
A.	A	В	A	C	В	В	C	D	С	С
Q.	11	12	13	14	15	16	17	18	19	20
А.	В	А	В	D	В	С	D	А	C	С
	1									