

Class: XIIth **DATE:**

SOLUTIO

SUBJECT: MATHS

DPP NO. : 3

Topic: - continuity and differentiability

(c) 1

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \lambda[x] = 0$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} 5^{1/x} = 0$$

And
$$f(0) = \lambda[0] = 0$$

 \therefore f is continuous only whatever λ may be

2 (b)

We have,

$$y(x) = f(e^x) e^{f(x)}$$

$$\Rightarrow y'(x) = f'(e^x) \cdot e^x \cdot e^{f(x)} + f(e^x) e^{f(x)} f'(x)$$

$$\Rightarrow y'(0) = f'(1)e^{f(0)} + f(1)e^{f(0)}f'(0)$$

$$\Rightarrow y'(0) = 2 \qquad [\because f(0) = f(1) = 0, f'(1) = 2]$$

Since f(x) is differentiable at x = 1. Therefore,

$$\lim_{x \to 0^{+}} \frac{f(x) - f(1)}{x + 1} = \lim_{x \to 0^{+}} \frac{f(x) - f(1)}{x + 1}$$

$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1}$$

$$\Rightarrow \lim_{h \to 0} \frac{f(1 - h) - f(1)}{-h} = \lim_{h \to 0} \frac{f(1 + h) - f(1)}{h}$$

$$\Rightarrow \lim_{h \to 0} \frac{a(1-h)^2 - b - 1}{-h} = \lim_{h \to 0} \frac{\frac{1}{|1+h|} - 1}{h}$$

$$\Rightarrow \lim_{h \to 0} \frac{(a-b-1) - 2ah + ah^2}{-h} = \lim_{h \to 0} \frac{-h}{h(1+h)}$$

$$\Rightarrow \lim_{h \to 0} \frac{(a-b-1) - 2ah + ah^2}{-h} = \lim_{h \to 0} \frac{-h}{h(1+h)}$$

$$\Rightarrow \lim_{h \to 0} \frac{-(a-b-1)-2 ah - ah^2}{h} = -1$$

$$\Rightarrow -(a-b-1) = 0 \text{ and so } \lim_{h \to 0} \frac{2ah - ah^2}{h} = -1$$

$$\Rightarrow -(a-b-1) = 0$$
 and so $\lim_{h\to 0} \frac{2ah-ah^2}{h} = -1$

$$\Rightarrow a - b - 1 = 0 \text{ and } 2a = -1 \Rightarrow a = -\frac{1}{2}, b = -\frac{3}{2}$$

(c)

We have,

$$f(x) = \frac{\sin 4\pi[x]}{1+[x]^2} = 0 \text{ for all } x \text{ } [\because 4\pi[x] \text{ is a multiple of } \pi]$$

$$\Rightarrow f'(x) = 0 \text{ for all } x$$

(d)

We have,

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \sin \frac{1}{x}$$

$$\Rightarrow \lim_{x \to 0} f(x) = \text{An osc}$$

$$\Rightarrow \lim_{x \to 0} f(x) = \text{An oscillating number which oscillates between } -1 \text{ and } 1$$

Hence, $\lim_{x\to 0} f(x)$ does not exist

Consequently, f(x) cannot be continuous at x = 0 for any value of k

6

SMARTLEARN COACHING

It is clear from the graph that f(x) is continuous everywhere and also differentiable everywhere except $\{-1,1\}$ due to sharp edge

(d)

We have,

$$\log\left(\frac{x}{y}\right) = \log x - \log y$$
 and $\log(e) = 1$

$$f(x) = \log x$$

Clearly, f(x) is unbounded because $f(x) \to -\infty$ as $x \to 0$ and $f(x) \to +\infty$ as $x \to \infty$

$$f\left(\frac{1}{x}\right) = \log\left(\frac{1}{x}\right) = -\log x$$

As
$$x \to 0$$
, $f\left(\frac{1}{x}\right) \to \infty$

Also,

$$\lim_{x \to 0} x f(x) = \lim_{x \to 0} x \log x = \lim_{x \to 0} \frac{\log x}{1/x}$$

$$\lim_{x \to 0} x f(x) = \lim_{x \to 0} x \log x = \lim_{x \to 0} \frac{\log x}{1/x}$$

$$\Rightarrow \lim_{x \to 0} x f(x) = \lim_{x \to 0} \frac{1/x}{-1/x^2} = -\lim_{x \to 0} x = 0$$

Since g(x) is the inverse of f(x). Therefore,

$$fog(x) = x$$
, for all x

$$\Rightarrow \frac{d}{dx} \{f \circ g(x)\} = 1, \text{ for all } x$$

$$\Rightarrow f'(g(x))g'(x) = 1$$
, for all x

$$\Rightarrow \frac{1}{1 + \{g(x)\}^3} \times g'(x) = 1 \text{ for all } x \qquad \left[\because f'(x) = \frac{1}{1 + x^3}\right]$$

$$\Rightarrow g'(x) = 1 + \{g(x)\}^3$$
, for all x

We have,

$$f(x) = |x^2 - 4x + 3|$$

$$\Rightarrow f(x) = \begin{cases} x^2 - 4x + 3, & \text{if } x^2 - 4x + 3 \ge 0 \\ -(x^2 - 4x + 3), & \text{if } x^2 - 4x + 3 < 0 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} x^2 - 4x + 3, & \text{if } x \le 1 \text{ or } x \ge 3 \\ -x^2 + 4x - 3, & \text{if } 1 < x < 3 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} x^2 - 4x + 3, & \text{if } x \le 1 \text{ or } x \ge 3 \\ -x^2 + 4x - 3, & \text{if } 1 < x < 3 \end{cases}$$

Clearly, f(x) is everywhere continuous Now,

(LHD at
$$x = 1$$
) = $\left(\frac{d}{dx}(x^2 - 4x + 3)\right)_{\text{at } x = 1}$

$$\Rightarrow$$
 (LHD at $x = 1$) = $(2x - 4)_{at \ x=1} = -2$

(RHD at
$$x = 1$$
) = $\left(\frac{d}{dx}(-x^2 + 4x - 3)\right)_{\text{at } x = 1}$

$$\Rightarrow$$
 (RHD at $x = 1$) = $(-2x + 4)_{at x=1} = 2$

Clearly, (LHD at
$$x = 1$$
) \neq (RHD at $x = 1$)

Smart DPPs

So, f(x) is not differentiable at x = 1

Similarly, it can be checked that f(x) is not differentiable at x=3 also <u>ALITER</u> We have,

 $f(x) = |x^2 - 4x + 3| = |x - 1| |x - 3|$

Since, |x - 1| and |x - 3| are not differentiable at 1 and 3 respectively

Therefore, f(x) is not differentiable at x = 1 and x = 3

11 (c)

The point of discontinuity of f(x) are those points where $\tan x$ is infinite.

ie, $\tan x = \tan \infty$

$$\Rightarrow \quad x = (2n+1)\frac{\pi}{2}, \qquad n \in I$$

12 **(a**)

Using graphical transformation

As, we know the function is not differentiable at 6 sharp edges and in figure (iii) y = |x| - 1 we have 3 sharp edges at x = -1, 0, 1

f(x) is not differentiable at $\{0, \pm 1\}$

$$\lim_{x \to 0^{-}} f(x) = \lim_{h \to 0} 2(0 - h) = 0$$

And $\lim_{x \to 0^+} f(x) = \lim_{h \to 0} 2(0+h) + 1 = 1$

 $\lim_{x \to 0^-} f(x) \neq \lim_{x \to 1^+} f(x)$

f(x) is discontinuous at x = 0

14 **(b)**

Draw a rough sketch of y = f(x) and observe its properties

15 (c)

$$\lim_{x \to \pi} \frac{(1 + \cos x) - \sin x}{(1 + \cos x) + \sin x}$$

$$= \lim_{x \to \pi} \frac{2\cos^2 x/2 - 2(\sin x/2)\cos x/2}{2\cos^2 x/2 + 2(\sin x/2)\cos x/2}$$

$$= \lim_{x \to \pi} \tan\left(\frac{\pi}{4} - \frac{\pi}{2}\right) = -1$$

Since, f(x) is continuous at $x = \pi$

$$f(\pi) = \lim_{x \to \pi} f(x) = -1$$

16 (d)

$$f'(1^{-}) = \lim_{h \to 0} \frac{f(1-h) - f(1)}{-h}$$

$$= \lim_{h \to 0} \frac{(1-h-1) \cdot \sin\left(\frac{1}{1-h-1}\right) - 0}{-h}$$

$$= -\lim_{h \to 0} \sin\frac{1}{h}$$
And $f'(1^{+}) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$

$$= \lim_{h \to 0} \frac{(1+h-1) \sin\left(\frac{1}{1+h-1}\right) - 0}{h}$$

$$= \lim_{h \to 0} \sin\frac{1}{h}$$

$$\therefore f'(1^{-}) \neq f'(1^{+})$$
 f is not differentiable at $x = 1$
Again, now

$$f'(0^{+}) = \lim_{h \to 0} \frac{(0+h-1)\sin\left(\frac{1}{0+h-1}\right) - \sin 1}{h}$$
$$= \lim_{h \to 0} \frac{\left[-\left\{ (h-1)\cos\left(\frac{1}{h-1}\right) \times \left(\frac{1}{(h-1)^{2}}\right) \right\} + \sin\left(\frac{1}{h-1}\right) \right]}{1}$$

[using L 'Hospital's rule]

$$= \cos 1 - \sin 1$$

And
$$f'(0^-) = \lim_{h \to 0} \frac{(0-h-1)\sin(\frac{1}{0-h-1})-\sin 1}{-h}$$

$$= \lim_{h \to 0} \frac{(-h-1)\cos(\frac{1}{-h-1})(\frac{1}{(-h-1)^2})-\sin(\frac{1}{-h-1})}{-1}$$

[using L 'Hospital's rule]

$$= \cos 1 - \sin 1$$

$$\Rightarrow f'(0^-) = f'(0^+)$$

$$\therefore$$
 f is differentiable at $x = 0$

As f(x) is continuous at $x = \frac{\pi}{2}$

$$\lim_{x \to \frac{\pi_{-}}{2}} f(x) = \lim_{x \to \frac{\pi_{+}}{2}} f(x)$$

$$\lim_{x \to \frac{\pi_{-}}{2}} f(x) = \lim_{x \to \frac{\pi_{+}}{2}} f(x)$$

$$\Rightarrow m \frac{\pi}{2} + 1 = \sin \frac{\pi}{2} + n \Rightarrow m \frac{\pi}{2} + 1 = 1 + n \Rightarrow n = \frac{m \pi}{2}$$

Since,
$$\frac{f(6)-f(1)}{6-1} \ge 2$$
 $\left[\because f'(x) = \frac{y_2-y_1}{x_2-x_1}\right]$

$$\Rightarrow f(6) - f(1) \ge 10$$

$$\Rightarrow f(6) + 2 \ge 10$$

$$\Rightarrow f(6) \ge 8$$

We have,

$$\lim_{x\to a^-} f(x) \ g(x) = \lim_{x\to a^-} f(x) \cdot \lim_{x\to a^-} g(x) = m \times l = ml$$
 and,

$$\lim_{x \to a^{+}} f(x) \ g(x) = \lim_{x \to a^{+}} f(x) \lim_{x \to a^{+}} g(x) = lm$$

$$\therefore \lim_{x \to a^{-}} f(x) \ g(x) = \lim_{x \to a^{+}} f(x) \ g(x) = lm$$

$$\lim_{x \to a^{-}} f(x) \ g(x) = \lim_{x \to a^{+}} f(x) \ g(x) = lm$$

Hence, $\lim_{x\to a} f(x) g(x)$ exists and is equal to lm

We have,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x)f(h) - f(x)}{h}$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - 1}{h} \quad [\because f(x+y) = f(x)f(y)]$$

$$\Rightarrow f'(x) = f(x) \left\{ \lim_{h \to 0} \frac{1 + h g(h) - 1}{h} \right\} \quad [\because f(x) = 1 + x g(x)]$$

$$\Rightarrow f'(x) = f(x) \lim_{h \to 0} g(h) = f(x) \cdot 1 = f(x)$$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	С	В	В	С	D	С	D	В	С	D
				16						
Q.	11	12	13	14	15	16	17	18	19	20
Α.	С	A	C	В	C	D	С	D	В	С
			A	11						

SMARTLEARN COACHING