

and similarly *Q* lies on the sphere $x^2 + y^2 + z^2 + 2rx = 0$ 6 (d) Distance of a point (1,1,1) from x + y + z + k = 0 is $\left|\frac{1+1+1+k}{\sqrt{3}}\right| = \left|\frac{3+k}{\sqrt{3}}\right|$ According to question $\left|\frac{3+k}{\sqrt{2}}\right| = \pm 2\sqrt{3} \Rightarrow k = 3, -9$ Since, given points divide the *XOZ*-plane. \therefore Required ratio = $-y_1: y_2 = -3:7$ 8 (b) DC's of the given line are $\frac{1}{3}$, $-\frac{2}{3}$, $-\frac{2}{3}$ Hence, the equation of line can be point in the form $\frac{x-2}{1/3} = \frac{y+3}{-2/3} = \frac{z+5}{-2/3} = r$: Point is $\left(2 + \frac{r}{3}, -3 - \frac{2r}{3}, -5 - \frac{2r}{3}\right)$ $\therefore r = \pm 6$ Points are (4, -7, -9) and (0, 1, -1)(a)

The plane passes through A(0, 0, 1), B(0, 1, 2) and C(1, 2, 3). Therefore, a vector normal to the plane is given by

$$\vec{n} = \vec{A}B \times \vec{A}C = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 1 & 1 \\ 1 & 2 & 2 \end{vmatrix} = 0 \ \hat{i} + \hat{j} - \hat{k}$$

Hence, direction ratios of normal to the plane are proportional to 0, 1, -1

10 **(b)**

Suppose *xy*-plane divides the join of (1, 2, 3) and (4, 2, 1) in the ratio λ : 1. Then, the coordinates of the point of division are

 $\left(\frac{4\lambda+1}{\lambda+1}, \frac{2\lambda+2}{\lambda+1}, \frac{\lambda+3}{\lambda+1}\right)$

This point lies on xy-plane

 $\therefore z \text{-coordinate} = 0 \Rightarrow \frac{\lambda + 3}{\lambda + 1} = 0 \Rightarrow \lambda = -3$

Hence, *xy*-plane divides the join of (1, 2, 3) and (4, 2, 1) externally in the ratio 3 : 1

<u>ALTER</u> We know that the *XY*-plane divides the segment joining $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ in the ratio $(-z_1): z_2$

 \therefore XY-plane divides the join of (1, 2, 3) and (4, 2, 1) in the ratio -3:1 i.e. 3:1 externally

Let l, m, n be the direction cosines of \vec{r} . Then, l = m = n [Given]

$$\therefore l^2 + m^2 + n^2 = 1 \Rightarrow 3 l^2 = 1 \Rightarrow l = \frac{1}{\sqrt{3}} = m = n$$

Now,
$$r = |r|(l\,l + m\,j + n\,k)$$

 $\Rightarrow \vec{r} = 6\left(\frac{1}{\sqrt{3}}\hat{\iota} + \frac{1}{\sqrt{3}}\hat{j} + \frac{1}{\sqrt{3}}\hat{k}\right) = 2\sqrt{3}(\hat{\iota} + \hat{j} + \hat{k})$

Since, direction ratio of given planes are (2, -1, 1) and (1, 1, 2) $\therefore \theta \cos^{-1}\left(\frac{2 \times 1 - 1 \times 1 + 1 \times 2}{\sqrt{4 + 1 + 1}\sqrt{1 + 1 + 4}}\right)$

Smart DPPs

 $=\cos^{-1}\left(\frac{3}{\sqrt{6}\sqrt{6}}\right)$ $=\cos^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}$ 13 (b) The equation of a plane parallel to the plane $\vec{r} \cdot (4\hat{\imath} - 12\hat{\jmath} - 3\hat{k}) - 7 = 0$ is, $\vec{r} \cdot \left(4\hat{\iota} - 12\hat{\jmath} - 3\hat{k}\right) + \lambda = 0$ This passes through $2\hat{\imath} - \hat{\jmath} - 4\hat{k}$ $\therefore (2\hat{\imath} - \hat{\jmath} - 4\hat{k}) \cdot (4\hat{\imath} - 12\hat{\jmath} - 3\hat{k}) + \lambda = 0$ \Rightarrow 8 + 12 + 12 + λ = 0 $\Rightarrow \lambda = -32$ So, the required plane is $\vec{r} \cdot (4\hat{\imath} - 12\hat{\imath} - 3\hat{k}) - 32 = 0$ 14 (a) Equation of the give plane can be writer as $(3\hat{\mathbf{i}} - 4\hat{\mathbf{j}} + 5\hat{\mathbf{k}}) \cdot (x\,\hat{\mathbf{i}} + y\,\hat{\mathbf{j}} + z\hat{\mathbf{k}}) = 8$ So, that the normal to the given plane is $3\hat{i} - 4\hat{j} + 5\hat{k}$ and the required line being perpendicular to the plane is parallel to this normal and since, it passes through $3\hat{\mathbf{i}} - 5\hat{\mathbf{j}} + 7\hat{\mathbf{k}}$, its equation is $\vec{\mathbf{r}} = 3\hat{\mathbf{i}} - 5\hat{\mathbf{j}} + 7\hat{\mathbf{k}} + \lambda(3\hat{\mathbf{i}} - 4\hat{\mathbf{j}} + 5\hat{\mathbf{k}})$ Where λ is a parameter Since, this lie passes through the vector $3\hat{i} - 5\hat{j} + 7\hat{k}$ *ie*, the point (3, -5, 7) and is parallel to $3\hat{i} - 4\hat{j} + 5\hat{k}$, its direction ratios are 3, -4, 5 Its cartesian equation is $\frac{x-3}{3} = \frac{y+5}{-4} = \frac{z-7}{5}$ 15 (a) Given lines can be rewritten as $\frac{x-\frac{1}{3}}{1} = \frac{y-\frac{1}{3}}{2} = \frac{z-1}{3}$ This shows that DR's of given equation are (1, 2, 3). 16 (d) Given line is parallel to $\vec{b} = -\hat{i} + \hat{j} + \hat{k}$ and the given plane is normal to $\vec{n} = 3\hat{i} + 2\hat{j} - \hat{k}$ Let θ be the angle between the given line and given plane. Then, $\sin \theta = \frac{b \cdot n}{|\vec{b}| |\vec{n}|}$ $\Rightarrow \sin \theta = \frac{-3 + 2 - 1}{\sqrt{3}\sqrt{14}} \Rightarrow \theta = \sin^{-1}\left(\frac{-2}{\sqrt{42}}\right)$ 17 Let the source of light be situated at A(a, 0, 0), where, $a \neq 0$ Let *OA* be the incident ray, *OB* be the reflected ray and *ON* be the normal to the mirror at *O*

$$\therefore \angle AON = \angle NOB = \frac{\theta}{2} \quad (say)$$

Direction ratios of \vec{OA} are proportional to a, 0, 0 and so its direction cosines are 1, 0, 0 Direction cosines of ON are $\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$

$$\therefore \cos\frac{\theta}{2} = \frac{1}{\sqrt{3}}$$

18 (d) Given, 3lm - 4ln + mn = 0(i) and l + 2m + 3n = 0 ...(ii) From Eq. (ii), l = -(2m + 3n) putting in Eq. (i) -3(2m+3n)m + 4(2m+3n)n + mn = 0 $\Rightarrow -6m^2 + 12n^2 = 0$ $\Rightarrow m = \pm \sqrt{2}n$ $m = \sqrt{2}n$ Now. $\Rightarrow l = -(2\sqrt{2}n + 3n) = -(2\sqrt{2} + 3)n$ $\therefore l:m:n = -(3+2\sqrt{2})n:\sqrt{2}n:n$ $= -(3 + 2\sqrt{2}):\sqrt{2}:1$ $\Rightarrow l = -(-2\sqrt{2} + 3)n$ 41.

Also,
$$m = -\sqrt{2}n \Longrightarrow l = -(-$$

 $\therefore l:m:n = -(3 - 2\sqrt{2})n: -\sqrt{2}:n$

 $= -(3 - 2\sqrt{2}): -\sqrt{2}: 1$ $= \cos \theta$ $\frac{(3+2\sqrt{2})(3-2\sqrt{2})+(\sqrt{2})(-\sqrt{2})+1\cdot 1}{\sqrt{(3+2\sqrt{2})^2+(\sqrt{2})^2+1^2}\sqrt{(3-2\sqrt{2})^2+(-\sqrt{2})^2+1^2}}$ π

$$\Rightarrow \theta = \frac{\pi}{2}$$

= 0

19 (a) Equation of plane passing through (-1, 3, 0) is A(x + 1) + B(y - 3) + C(z - 0) = 0....(i) Also, plane (i) is passing through the points (2, 2, 1) and (1,1,3) 3A - B + C = 0 ...(ii) And 2A - 2B + 3C = 0 ...(iii) On solving Eqs. (i) and (iii), we get Α В С $\frac{1}{-3+2} = \frac{1}{2-9} = \frac{1}{-6+2}$ $\therefore A: B: C = -1: -7: -4$

 $\Rightarrow A: B: C = 1: 7: 4$ From Eq. (i), 1(x + 1) + 7(y - 3) + 4(z) = 0 $\Rightarrow x + 7y + 4z - 20 = 0$ $\therefore \text{ Distance from the plane to the point (5, 7, 8)}$ $= \frac{1 \times 5 + 7 \times 7 + 4 \times 8 - 20}{\sqrt{1^2 + 7^2 + 4^2}}$ $= \frac{5 + 49 + 32 - 20}{\sqrt{66}} = \frac{66}{\sqrt{66}} = \sqrt{66}$ 20 (a)

The line of intersection of the plane $\vec{r} \cdot (3\hat{\iota} - \hat{\jmath} + \hat{k}) = 1$ and $\vec{r} \cdot (\hat{\iota} + 4\hat{\jmath} - 2\hat{k}) = 2$ is perpendicular to each of the normal vectors $\vec{n_1} = 3\hat{\iota} - \hat{\jmath} + \hat{k}$ and $\vec{n_2} = \hat{\iota} + 4\hat{\jmath} - 2\hat{k}$ and hence it is parallel to the vector $\vec{n_1} \times \vec{n_2} = (3\hat{\iota} - \hat{\jmath} + \hat{k}) \times (\hat{\iota} + 4\hat{\jmath} - 2\hat{k}) = -2\hat{\iota} + 7\hat{\jmath} + 13\hat{k}$

Smart

ANSWER-KEY											
Q.	1	2	3	4		5	6	7	8	9	10
A.	С	В	С	D	1	А	D	С	В	А	В
				11/		~					
Q.	11	12	13	14		15	16	17	18	19	20
A.	D	А	В	Α	1	Α	D	D	D	Α	Α
			1		K.		y.				

SMARTLEARN COACHING