

Class : XIIth Date :

Solutions

Subject : CHEMISTRY DPP No. : 3

Topic :- Chemical Kinetics

1	(c)
	$K_1 = 10^{16} e^{-2000/T}; K_2 = 10^{15} e^{-1000/T}$
	if $K_1 = K_2$ then $10^{16}e^{-2000/T} = 10^{15}e^{-1000/T}$ or $\log 10 - \frac{2000}{T} = -\frac{1000}{T}$ or $T = \frac{1000}{2.303}$ K
	or $\log 10 - \frac{2000}{\pi} = -\frac{1000}{\pi}$ or $T = \frac{1000}{\pi}$ K
2	
2	(c)
	As we know that, rate of reaction is directly proportional to concentration of reactant and inversely proportional to the volume of vessel.
	<i>i.e.</i> , concentration $\alpha \propto \frac{n}{2}$
	v
	For a given reaction, $2NO(x) + O_{1}(x) \rightarrow 2NO_{1}(x)$
	$2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$ Rate of reaction= $k[NO]^2[O_2]$
	If volume of vessel is reduced by $\frac{1}{3}rd$ of its initial value, then concentration of compound is
2	increase by 3 times. Hence, the rate of reaction will be increased by 27 times.
3	(c)
	For a zero order reaction
	$k_0 = \frac{[A_0]}{2t_{1/2}}$
	Since, $[A]_0 = 2 M$, $t_{1/2} = 1 h$
	So, $k_0 = 1$ and
	$\Delta x = 0.50 - 0.25$
	$k_0 = \frac{\Delta x}{t} \text{ or } t = \frac{0.50 - 0.25}{1} = 0.25 h$
4	
	$A + B \rightarrow C + D$
	Rate $(r) = k[A]^{a}[B]^{b}$ (i)
	$2r = k[2A]^{a}[B]^{b}$ (ii)
	$3r = k[A]^{a}[9B]^{b}$ (iii)
	Dividing eq.(ii) by eq.(i)
	$2 = 2^a \text{ or } a = 1$
	Dividing eq (iii) by eq.(i) $3 = 9^b \text{ or } 3 = 3^{2b} \text{ or } 2b = 1 \text{ or } b = 1/2$
	So order of reaction = $1 + \frac{1}{2} = \frac{3}{2}$
-	
5	(a) N.
	$N = \frac{N_0}{2n}$
	T = 40
	$N = \frac{N_0}{2^n}$ $n = \frac{T}{t_{1/2}} = \frac{40}{20} = 2$
	$N_0 N_0$
	$\therefore \qquad N = \frac{N_0}{2^2} = \frac{N_0}{4}$
6	(a)

 $p_1 = 80 \text{ kPa}$, $(t_{1/2})_1 = 350s$ $p_1 = 40 \text{ kPa}$, $(t_{1/2})_1 = 175s$ $\frac{80}{40} = \frac{350}{175} = 2$ Zero order $t_{1/}$ reaction Concentration — $\because \frac{p_1}{p_2} = \frac{(t_{1/2})_1}{(t_{1/2})_2} = \frac{a_1}{a_2}$ $(t_{1/2}) \propto a(\text{zero order reaction})$ 7 (b) Thermal decomposition, $CH_3CHO \xrightarrow{\Delta} CH_4 + CO$ $\frac{dx}{dt} = k[CH_3CHO]^{3/2}$ 8 (b) For the reaction : $A \rightarrow 2B + C$ 0 0 p_1 After 10 min $p_1 - p$ 2ppAfter long time0 $2p_1$ p_1 Total pressure = $(p_1 - p + 2p + p) = 176$ mm Total pressure after long time $= 2p_1 + p_1 = 270 \text{ mm}$ Calculate the value of p from above two equation and then the difference of p_1 and p will be the pressure of A 9 (c) 200 kJ threshold energy (Et) E'a (energy of

Where,

 E_a =activation energy of forward reaction

10

11

12

13

14

16

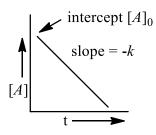
17

 $E_a^{\prime\prime}$ = activation energy of backward reaction The above energy profile diagram shows that $E_a > E_a''$ The potential energy of the product is greater than that of the reactant, so the reaction is endothermic. $E_a = E_a^{\prime\prime} + \Delta E$ $E_t = E_a \text{ or } E_t > E_a^{\prime\prime}$ Combination of H_2 and B_{r2} to give HBr is zero order reaction as the rate of reaction is not affected by the concentration of reactants. $H_2 + B_{r2} \xrightarrow{hv} 2 HBr$ (a) Rate of reaction $=\frac{1}{4}\frac{d(NO_2)}{dt}=\frac{5.2\times10^{-3}}{4\times100}$ $= 1.3 \times 10^{-5} Ms^{-1}$ (d) $9 = \left(\frac{3.24 \times 10^{-2}}{1.2 \times 10^{-3}}\right)^n$ $9 = (3^3)^{2/3}$ order of the reaction is=2/3(b) For zero order reaction $k = \frac{a}{2t_{1/2}} = \frac{a}{2 \times 100} = \frac{a}{200}$ When 80% completion take place $k = \frac{x}{t}$ 0.80a а $\frac{1}{200} = \frac{1}{t}$ $t = 200 \times 0.8 = 160 \text{ min}$ (a) $2A + B \rightarrow product$ [B] is doubled, half-life didn't change Half-life is independent of change in concentration of reactant i.e., first order First order w.r.t. to B When [A] is doubled, rate increased by two times \Rightarrow First order w.r.t.A Hence, net order of reaction =1+1=2Unit for the rate constant=conc.⁽¹⁻ⁿ⁾ t^{-1} $= (mol^{-1})^{-1} \cdot s^{-1}$ $L.mol^{-1}s^{-1}$ (c) $H_2O + O \rightarrow 2OH; \Delta H = 72kJ \text{ at } 500 \text{ K};$ Given $E_a = 77 \text{ kJmol}^{-1}$ $20H \rightarrow H_20 + 0; E_{a_{B.R.}}$ For a reaction $E_{a_{FR}} = \Delta H + E_{a_{RR}}$ $\therefore 77 = 22 + E_{a_{B.R}}$ $\therefore E_{a_{B,R}} = 5 \text{kJ mol}^{-1}$ (d) According to Arrhenius equation, the relationship between the activation energy and temperature is

:.

$$k = Ae^{-E_a/RT}$$

$$\log k = \frac{-E_a}{2.303 RT} + \log A$$


$$\therefore \text{ Activation energy decreases with rise in temperature, thereby increasing the rate of the reaction.}$$

(d)

rate = K[A]¹

$$K = \frac{2.0 \times 10^{-5}}{0.01} = 2.0 \times 10^{-3} \text{s}^{-1}$$
∴ $t_{1/2} = \frac{0.693}{2 \times 10^{-3}} = 347 \text{s}$
(c)

19

For a zero order reaction, the plot of concentration of reactant vs time is a straight line (linear) with a negative slope and non-zero intercept.

20

(b)

$$r = K[A]^m[B]^n;$$

Also, $\frac{r}{4} = K[A]^m[2B]^n$
 $4 = \left(\frac{1}{2}\right)^n \text{ or } 2^2 = 2^{-n}$
 $\therefore \qquad n = -2$

Smart DPPs

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	С	С	С	С	Α	Α	В	В	C	D			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	Α	D	В	Α	В	С	D	D	С	В			

SMARTLEARN COACHING