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 Charge is the property associated with matter due to which it produces and experiences electrical 
and magnetic effects.  
 All bodies consist of atoms, which contain equal amount of positive and negative charges in the 
form of protons and electrons respectively. The number of electrons being equal to the number of protons 
as an atom is electrically neutral. If the electrons are removed from a body, it gets positively charged. If 
the electrons are transferred to a body, it gets negatively charged.  
 “Similar charges (charges of the same sign) repel one another; and dissimilar charges (charges 
of opposite sign) attract one another.” 
1.1 WAYS OF CHARGING A BODY  
 (i) Charging by friction  
 When two bodies are rubbed together, a transfer of electrons takes place from one body to 
another. The body from which electrons have been transferred is left with an excess of positive charge, 
so it gets positively charged. The body which receives the electrons becomes negatively charged.  
 “The positive and negative charges produced by rubbing are always equal in magnitude.” 
 When a glass rod is rubbed with silk, it loses its electrons and gets a positive charge, while the 
piece of silk acquires equal negative charges.  
 An ebonite rod acquires a negative charge, if it is rubbed with wool (or fur). The piece of wool (or 
fur) acquires an equal positive charge.  
 (ii) Charging by electrostatic induction  
 If a positively charged rod is brought near an insulated conductor, the negative charges 
(electrons) in the conductor will be attracted towards the rod. As a result, there will be an excess of 
negative charge at the end of the conductor near the rod and the excess of positive charge at the far 
end. This is known as ‘electrostatic induction’. The charges thus induced are found to be equal and 
opposite to each other. Now if we touch the far end with a conductor connected to the earth, the positive 
charges here will be cancelled by negative charges coming from the earth through the conducting wire. 
Now, if we remove the wire first and then the rod, the induced negative charges which were held at the 
outer end will spread over the entire conductor. It means that the conductor has become negatively 
charged by induction. In the same way one can induce a positive charge on a conductor by bringing a 
negative charged rod near it.  
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Important points regarding electrostatic induction 
 (a) Inducing body neither gains nor loses charges.  
 (b) The nature of induced charge is always opposite to that of inducing charge.  
 (c) Induced charge can be lesser or equal to inducing charge but it is never greater than the 

inducing charge.  
 (d) Induction takes place only in bodies (either conducting or nor conducting) and not in 

particles.  

ELECTRIC CHARGES AND FIELDS 

           ELECTRIC CHARGE 
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 (iii) Charging by conduction  
 Let us consider two conductors, one charged and the other uncharged. We bring the conductors 
in contact with each other. The charge (whether negative or positive) under its own repulsion will spread 
over both the conductors. Thus the conductors will be charged with the same sign. This is called ‘charging 
by conduction (through contact)’. 
1.2 UNIT OF CHARGE  

 In SI units as current is assumed to be fundamental quantity and 
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, charge is a derived 

physical quantity with dimensions [AT] and unit (ampere  second) called ‘coulomb (C)’. 
 The coulomb is related to CGS units of charge through the basic relation 

 1 coulomb = 3  109 esu of charge = 10

1

 emu of charge 
1.3 PROPERTIES OF CHARGE 
 (i) Charge is always associated with mass 
 The charge can not exist without mass though mass can exist without charge.  
 (ii) Charge is quantised 
 When a physical quantity can have only discrete values rather than any value, the quantity is said 
to be quantised.  
 Several experiments have established that the smallest charge that can exist in nature is the 

charge of an electron. If the charge of an election (= 1.6  10−19C) is taken as the elementary unit, i.e., 
quanta of charge, and is denoted by e, the charge on any body will be some integral multiple of e, i.e.,  

  q =  ne ; n = 1, 2, 3, ……….. … (1)  

charge on a body can never be 








3

2e
, (17.2) e or (10−5) e etc.  

 (iii) Charge is conserved 
 A large number of experiments show that in an isolated system, total charge does not change 
with time, though individual charges may change, i.e., charge can neither be created nor be destroyed. 
This is known as the principle of conservation of charge.  
 (iv) Charge is invariant  
 This means that charge is independent of frame of reference, i.e., charge on a body does not 
change whatever be its speed.  
1.4 CONDUCTORS AND INSULATORS 
 The conductors are materials, which allow electricity (electric charge) to pass through them due 
to the presence of free elections. e.g., metals are good conductors.  
 The insulators are materials, which do not allow electric charge to pass through them as there is 
no free electrons in them. e.g. wood, plastics, glass etc.   

 

 
 

 “Two stationary point charges repel or attract each-other 
with a force which is directly proportional to the product of the 
magnitudes of their charges and inversely proportional to the 
square of the distance between them.”  
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 Let ‘r’ be the distance between two point charges q1 and q2.  

 According to Coulomb’s law, we have  F
2

21 ||||

r

qq
   

 where F is the magnitude of the mutual force that acts on each of the two charges q1 and q2.  

 or,  F = 
2

21 |||

r

qqK
, where K is a constant of proportionality  

 The value of K depends upon the medium in which two point charges are placed.  

           COULOMB’S LAW 
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 In the SI system.  K = 
04

1


 for vacuum (or air)  

 The constant 0 ( = 8.85 × 10–12 C2/N-m2) is called “permittivity” of the free space. Thus  

  F = 
2

21

0

||||

4

1

r

qq


  9 × 109 

2

21 ||||

r

qq

  … (2)  

2.1 PERMITTIVITY OF A MEDIUM  
 If the medium between the two point charges q1 and q2 is not a vacuum ( or air). Then the 
electrostatic force between the two charges becomes  

 F = 
4

1
 

2

21 ||||
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qq
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r04

1
 

2

21 ||||

r

qq
  … (3)  

 where  = 0 r is called the ‘absolute permittivity’ or ‘permittivity’ of the medium and r is a 
dimensionless constant called ‘relative permittivity’ of the medium which is a constant for a given medium. 

r is also sometimes called “dielectric constant’ or ‘specific inductive capacity’ of the medium.  
2.2 COLOUMB’S LAW IN VECTOR FORM  

 The vector form of Coulomb’s law is 
2

21

r

qKq
F =
→

r̂    … (4) 

 The unit vector r̂  has its origin at the ‘source of the force”. 

For example, to find the force on q2, the origin of r̂  is at q1. The 
signs of the charges must be explicitly included in equation (4). If 

F is the magnitude of the force, then 
→

F  = + rF ˆ  means a repulsion, 

whereas rFF ˆ−=
→

 means an attraction.  
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 According to the principle of superposition, the force 
acting on one charge due to another is independent of the 
presence of charges. So, we can calculate the force separately 
for each pair of charges and then take their vector sum or find 
the net force on any charge.  
 The figure shows a charge q1 interacting with other 
charges. Thus, to find the force on q1, we first calculate the 
forces exerted by each of the other charges, one at a time. The 

net force 1

→

F  on q1 is simply the vector sum 

1413121

→→→→

++= FFFF  +                            … (5) 

 

– 

+ 

– 

+ 
14

→

F  

q2 

q3 

q4 

12

→

F  

q1 

13

→

F   

 where 12

→

F   is the force on the charge q1 due to the charge q2 and so on.  

 

 
 

 To find the force exerted by a continuous charge 
distribution on a point charge, we divide the charge into 
infinitesimal charge elements. Each infinitesimal charge element 
is then considered as a point charge.  
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 The magnitude of the force dF exerted by the charge dq on the charge q0 is given by 

           PRINCIPLE OF SUPERPOSITION 
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,  
 where r is the distance between dq and q0. The total force is then found by adding all the 
infinitesimal force elements, which involves the integral 
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= FdF
    

 Taking KdFjdFidFFd zyx
ˆˆˆ ++=

→

, we have  
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  … (6)  

 Because of the vector nature of the integration, the mathematical procedure must be carried out 
with care. The symmetry of charge distribution will usually result in a simplified calculation.  
 Each type of charge distribution is described (in the table given below) by an appropriate Greek 

letter parameter: ,  or .  
 How we choose the charge element dq depends upon the particular type of the charge 
distribution.  

Charge distribution Relevant parameter SI units  Charge element dq 

Along a line , charge per unit length  C/m  dq =  dx  

On a surface  , charge per unit area  C/m2  dq =  dA  

Throughout a 
volume  

, charge per unit volume  C/m3  dq = dV  

 

 

 

 An electric field is defined as a region in which there should be a force on a charge brought into 
that region. Whenever a charge is being placed in an electric field, it experiences a force.  
 Electric fields that we will study are usually produced by 
different types of charged bodies – point charges, charged plates. 
Charged sphere etc. We can also define the electric field of a 
charged body as its region of influence within which it will exerts 
force on other charges. 

 
 q1 r q2 

 
 

 If two point charges are placed as shown, we describe the forces on them in two ways  
 (i) The charge q2 is in the electric field of charge q1. Thus the electric field of charge q1 exerts 
force on q2.      
 (ii) The charge q1 is in the electric field of charge q2. Hence the electric field of charge q2 exerts a 
force on q1.  

 Electric field ⎯⎯⎯⎯⎯ →⎯
onforceexerts

charges inside it.  

 Electric field ⎯⎯⎯⎯ →⎯
bycreatedis

charged bodies.  

5.1  ELECTRIC INTENSITY OR ELECTRIC FIELD STRENGTH (
→

E )  
 The electric field intensity at a point in an electric field is the force experienced by a unit positive 
charge placed at that point, it is being assumed that the unit charge does not affect the field.  

 Thus, if a positive test charge q0 experiences a force 
→

F at a point in an electric field, then the 

electric field intensity 
→

E  at that point is given by  

           ELECTRIC FIELD 
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0q

F
E

→
→

=   … (7)  

Important points regarding electric Intensity  
 (i) It is a vector quantity. The direction of the electric field intensity at a point inside the electric 
field is the direction in which the electric field exerts force on a (unit) positive charge.  
 (ii) Dimensions of the electric field intensity   
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 In S.I. systems, the unit of 
→

E is N/C or V/m as  
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5.2 FORCED EXERTED BY A FIELD ON A CHARGE INSIDE IT  

 By definition as ,
0q

F
E

→
→

=  i.e.,  

   
→→

= EqF 0  

 If q0 is a +ve charge, force 
→

F  on it is in the direction of 
→

E .  

 If q0 is a –ve charge, 
→

F  on it is opposite to the direction of 
→

E  
 →→

+= EqF 0  

→

E  

 

→→

−= EqF 0  

→

E   
5.3 ELECTRIC FIELD INTENSITY DUE TO A POINT CHARGE   
 Let a positive test charge q0 be placed at a distance r from 
a point charge q. The magnitude of force acting on q0 is given by 
Coulomb’s law, 

 

+q0 +q 
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 The magnitude of the electric field at the site of the charge is  

  
2

00 4
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r

q

q

F
E


==   … (8)  

 The direction of 
→

E  is the same as the direction of 
→

F , along a radial line from q, pointing outward if q is 
positive and negative if q is negative. 
 The figure given below shows the direction of the 

electric field 
→

E  at various points near a positive point 
charge. 
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5.4 ELECTRIC FIELD INTENSITY DUE TO A GROUP OF POINT CHARGES  
 Since the principle of linear superposition is valid for Coulomb’s law, it is also valid for the electric 
field. To calculate the electric field strength at a point due to a group of N point charges. We first find the 
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individual field strengths 1

→

E due to Q1, 2

→

E  due to Q2, and so on 

 The resultant field strength is the vector sum of individual field strengths.   

  +++=
→→→→

321 EEEE …    

      =  nE
→

 (n = 1, 2, 3, … N)  

 

 
 

 To find the field of a continuous charged distribution, we 
divide the charge into infinitesimal charge elements. Each 
infinitesimal charge element is then considered as a point 
charge and its field is given by  

  dE = 
2

04

1

r

dq


 

 At a point distant r from the element, the net field is the 
summation of fields of all the elements.  

 

→
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→→

= EdE  

 Taking jdEidEEd yx
ˆˆ +=

→

+ kdE z
ˆ , we have  = xx dEE ,  = yy dEE  and Ez = dEz 

 Because of the vector nature of the integration, the mathematical procedure must be carried out 
with care. Fortunately, in the cases we consider, the symmetry of the charge distribution usually results 
in a simplified calculation.  
 Each type of charge distribution is described (in the table given below) by an appropriate Greek-

letter parameter: ,  or . How we choose the charge element ‘dq’ depends upon the particular type of 
charge distribution.  
 

Charge Distribution Relevant Parameter SI Units Charge Element dq 

Along a line   , Charge per unit length C/m dq =  dx 

On a surface  , Charge per unit area  C/m2 dq =  dA 

Throughout a volume  , Charge per unit volume C/m3 dq =  dV 

 
6.1 ELECTRIC FIELD DUE TO A UNIFORMLY CHARGED RING AT A POINT ON THE AXIS OF 

THE RING  
 Let us consider a charge Q distributed uniformly on a thin, circular, non-conducting ring of radius 
a. We have to find electric field E at a point P on the axis of the ring, at a distance x from the centre.           

 From symmetry, we observe that 
every element dq can be paired with a 
similar element on the opposite side of the 

ring. Every component dEsin 
perpendicular to the x-axis is thus cancelled 

by a component dEsin in the opposite 
direction. In a summation process, all the 
perpendicular components add to zero. 
Thus we only add the dEx components.  
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 Now,  dE = 
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dq
 

           ELECTRIC FIELD OF CONTINUOUS CHARGE DISTRIBUTIONS 
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 Hence, the resultant electric field at P is given by  

    E = dEx   

      =  dEcos   

      =  
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 As we integrate around the ring, all the terms remain constant and dq = Q  
 So, the total field is  

         E = 
2/322

0 )(4

1

x

x

+ a

Q
     

 or    E = 
2/322

0 )(4

1

x

x

+ a

Q
 … (9A)  

6.2 ELECTRIC FIELD DUE TO A UNIFORMLY CHARGED DISC AT A POINT ON THE AXIS OF 
THE DISC 

 Let us consider a flat, circular, non-conducting thin disc of radius R having a uniform surface 

charge density  c/m2. We have to find the electric field intensity at an axial point at a distance x from the 
disc.            

 Let O be the centre of a uniformly charged disc of 

radius R and surface charge density . Let P be an axial 
point, distant x from O, at which electric field intensity is 
required. 
 From the circular symmetry of the disc, we imagine 
the disc to be made up of a large number of concentric 
circular rings and consider one such ring of radius r and an 
infinitesimally small width dr     

 P 

x 

O 
r dr 

 

 The area of the elemental ring = circumference x width = (2 rdr)  

 The charge dq on the elemental ring = (2rdr)   
 Therefore, the electric field intensity at P due to the elementary ring is given by  
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 and is directed along the x-axis. Hence, the electric intensity E due to the whole disc is given by  
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 A particle of mass m and charge q in an uniform electric field 
→

E  experiences a force  

  
→→

= EqF  

 From Newton’s second law of motion,  

  
→→

= amF  

           MOTION OF A CHARGED PARTICLE IN AN UNIFORM ELECTRIC FIELD 
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 Hence, the acceleration of the charged particle in the uniform electric field is  

  
m

Eq
a

→
→

=  

  Since the field is uniform, the acceleration is constant in magnitude and direction. So we can use 
the equation of kinematics for constant acceleration. Now, there are two possibilities.  
  (a)  If the particle is initially at rest  
   From equation v = u + at, we get  

   v = at = 







==

m

qE
ut

m

qE
a;0  

   From equation S = ut  + 2

2

1
ta , we have  

   S = 22

22

1
t

m

qE
t =a   

  (b)  (ii) If the particle is projected perpendicular to the field with an initial velocity v0.   
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  For motion along x-axis, we have vx = v0 = constant (u = v0 and a = 0)          

    x = v0t   … (i)  
  for motion along y-axis, we have  

  y = 2

2

1
t

m

qE








  … (ii)  

  







==

m

qE
u a;0  

  Substituting the value of t from equation (i) in equation (ii),  
  we get  

  

2

02








=

vm

qE
y

x
  

     = 2

2
02

x
mv

qE
 

  Which is the equation of the parabola.  
 

\ 

 

 The idea of electric lines of force or the electric field lines introduced by Michel Faraday is a way 
to visualize  electrostatic field geometrically.  
 The properties of electric lines of force are the following:  
 (i) The electric lines of force are continuous curves in an electric field starting from a positively 
charged body and ending on a negatively charged body.  

           ELECTRIC LINES OF FORCE 
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Electric lines of force due 
to positive charge 

   + 
 
 
 
 

– 

Electric lines of force due 
to negative charge 

 
 (ii)  The tangent to the curve at any point gives the direction of the electric field intensity at 
that point.   
 (iii) Electric lines of force never intersect since if they cross at a point, electric field intensity at 
that point will have two directions, which is not possible.  
 (iv)  Electric lines of force do not pass but leave or end on a charged conductor normally. 
Suppose the lines of force are not perpendicular to the conductor surface. In this situation, the component 
of electric field parallel to the surface would cause the electrons to move and hence conductor will not 
remain equipotential which is absurd as in electrostatics conductor is an equipotential surface.  

 – 
– 
– 

– 

– 

– 

– 
– 
– 
– 

Fixed point charge near infinite 
metal plate 

   + 

 
 (v)  The number of electric lines of force that originate from or terminate on a charge is 
proportional to the magnitude of the charge.  
 (vi)  As number of lines of force per unit area normal to the area at point represents magnitude 
of intensity, crowded lines represent strong field while distant lines weak field. Further, if the lines of force 
are equidistant straight lines, the filed is uniform.  

 

Magnitude is 
not constant 

Direction is not 
constant 

Both magnitude and 
direction not constant 

Both magnitude and 
direction constant.  

 
 

+Q 
O 
•  
 

+Q 

 
 Electric lines of force due to two equal positive charges (field is zero at O). O is a null point.  
 

 
           FLUX OF AN ELECTRIC FIELD OR ELECTRIC FLUX  
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 Let us consider a plane surface of area S placed in an 

electric field 
→

E .  

 Electric flux through an elementary area 
→

Sd  is defined 

as the scalar product of 
→

Sd and 
→

E  i.e.  

 dE = 
→

E .
→

Sd , where 
→

Sd  is the area vector, whose 

magnitude is the area ds of the element and whose direction 
is along the outward normal to the elementary area.    

 
→

E  

→

Sd  

 

dS 

 
 Hence, the electric flux through the entire surface is given by  

  E = 
→→

SdE .  … (10)  

 or,  E =  EdS cos     

 If the electric field is uniform, then E =  Eds cos  = E cos ds   
 When the electric flux through a closed surface is required, we use a small circular sign on the 
integration symbol;  

   E = 

→→

SdE .  … (11)    

Important points regarding electric flux:  
 (i)  The number of lines of force passing normally to the given area gives the measure of flux 

of electric field over the given area.  
 (ii)  It is a real scalar physical quantity with units (volt × m).  

 (iii) It will be maximum when cos  = max. = 1, i.e., 

 = 0°, i.e., electric field is normal to the surface 

with (dE)max =  EdS      

 →

E  
→

dS  

 
 (iv) It will be minimum when |cos | = min = 0, i.e., 

 = 90°, i.e., field is parallel to the area with 

(dE)min = 0   

 →

Sd  
E 

 
 (v)  For a closed surface, E is positive if the lines of force point outward everywhere  

(
→

E  will be outward everywhere,  < 90° and 
→

E . 
→

Sd  will be positive) and negative if they point inward (
→

E  is inward everywhere,  > 90° and 
→→

SdE .  will be negative)  
 

→

Sd  

→

E  

Positive flux Negative flux  
 

 

 This law gives a relation between the electric flux through any closed hypothetical surface (called 

a Gaussian surface) and the charge enclosed by the surface. It states, “ The electric flux (E) through 

any closed surface is equal to 
0

1


 times the ‘net’ charge enclosed by the surface.” 

 That is,  

  E =  
→→

SdE .
0

=
q

, … (12) 

           GAUSS’S LAW 
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 where q  denotes the algebraic sum of all the charges enclosed by the surface.  
 If there are several charges +q1, + q2, + q3, –q4, –q5 … etc inside the Gaussian surface, then  

  q = q1 + q2 + q3 – q4 –q5 …   
 It is clear from equation (11) that the electric flux linked with a closed body is independent of the 
shape and size of the body and position of charge inside it.  

Applications of Gauss’s Law  
 Gauss’s law is useful when there is symmetry in the charge distribution, as in the case of 
uniformly charged sphere, long cylinders, and flat sheets. In such cases, it is possible to find a simple 
Gaussian surface over which the surface integral given by equation (10) can be easily evaluated.  
 These are steps to apply the Gauss’s law  
 (i) Use the symmetry of the charge distribution to determine the pattern of the lines  

 (ii)  Choose a Gaussian surface for which 
→

E  is either parallel to 
→

Sd  or perpendicular to 
→

Sd  

 (iii) If 
→

E  is parallel to 
→

Sd , then the magnitude of 
→

E  should be constant over this part of the 

surface.  
 The integral then reduces to a sum over area elements.  

10.1 FIELD DUE TO AN INFINITE LINE OF CHARGE    

 Consider an infinite line of charge has a linear charge density . Using Gauss’s law,  let us find 
the electric field at a distance ‘r’ from the line.         

 The cylindrical symmetry tells us that the field strength 
will be the same at all points at a fixed distance r from the line. 
Since the line is infinite and uniform, for every charge element 
on one side, there is symmetrically located element on the 
other side. The component along the line of the fields due to 
all such elements cancel in pairs. Thus, the field lines are 
directed radially outward, perpendicular to the line of charge.      
 The appropriate choice of Gaussian surface is a 
cylinder of  radius r and length L. On the flat end faces, S2 and 

S3 , 
→

E  is perpendicular 
→

Sd , which means no flux crosses 

them. On the curved surface S1, 
→

E   is parallel 
→

Sd , so that 
→

E

. 
→

Sd  = EdS.  

 →

Sd  

s2 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
 

→

E  

→

E  
→

Sd  

s1 

→

Sd  

E 

→

Sd  

→

E  

s3 

 

 The charge enclosed by the cylinder is Q = L.  
 Applying Gauss’s law to the curved surface, we have  

  E .dS )2( rLE =  = 
0

L
 or,  E =

r02


  … (13A)    

10.2  FIELD DUE TO AN INFINITE PLANE SHEET OF CHARGE 
 

+ + 
+ 

+ 
+ 

+ 
+ + 

+ 
+ 

+ 

+ + 
+ 

+ 

+ 
+ 

+ 
+ + 

+ 
+ 

+ 

+ + 

→

E  
→

Sd  →

Sd  

→

E  
P P 

 
 Let us consider a thin non-conducting plane sheet of charge, infinite in extent, and having a 

surface charge density (charge per unit area)  C/m2.  Let P be a point, distant r from the sheet, at which 
the electric intensity is required.  

 Let us choose a point P  symmetrical with P, on the other side of the sheet. Let us now draw a 
Gaussian cylinder cutting through the sheet, with its plane ends parallel to the sheet and passing through 

P and P .  Let A be the area of each plane end.  
 By symmetry, the electric intensity at all points on either side near the sheet will be perpendicular 

to the sheet, directed outward (if the sheet is positively charged). Thus 
→

E  is perpendicular to the plane 
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ends of the cylinder and parallel to the curved surface. Also its magnitude will be the same at P and P.  
Therefore, the flux through the two plane ends is  

          E = 
→→→→

+ SdESdE ..   =  EdS + EdS = EA + EA = 2EA 

 The flux through the curved surface of the Gaussian cylinder is zero because 
→

E  and 
→

Sd  are at 

right angles everywhere on the curved surfaces.  
 Hence, the total flux through the Gaussian cylinder is  

  E = 2EA   

 The charge enclosed by the Gaussian surface q = A  
 Applying Gauss’s law, we have  

  2EA = 
0

A
 

        E = 
02


  … (13B)  

10.3 ELECTRIC FIELD DUE TO A UNIFORMLY CHARGED SPHERICAL SHELL  
 Using Gauss’s law, let us find the intensity of the electric field due to a uniformly charged spherical 
shell or a solid conducting sphere at  

 Case I: At an external point 
 At all points inside the charged spherical 
conductor or hollow spherical shell, electric field  
→

E  = 0, as there is no charge inside such sphere. 
In an isolated charged spherical conductor any 
excess charge on it is distributed uniformly over its 
outer surface same as that of charged spherical 
shell or hollow sphere. Since the charge lines must 
point radially outward. Also, the field strength will 
have the same value at all points on any imaginary 
spherical surface concentric with the charged 
conducting sphere or the shell. This symmetry 
leads us to choose the Gaussian surface to be a 
sphere of radius r > R.  

 

+ + 
+ 

+ 

+ 

+ 
+ + 

+ 

+ 

+ 

+ 

+ 

R 

→

E  
→

Sd  

Gaussian 
surface r r 

 

 Any arbitrary element of area 
→

Sd  is parallel to the local 
→

E  , so EdSSdE =
→→

.  at all points on the 

surface. 

 According to Gauss’s law, 
0

)4(


==
Q

rEdS  

 Therefore,  E = 
2

04

1

r

Q


     … (13C)    

 For points outside the charged conducting sphere or the charged spherical shell, the field is same 
as that of a point charge at the centre. 
 Case II:  At an Internal Point (r < R)   
 The field still has the same symmetry and so we again pick a spherical Gaussian surface, but 
now with radius r less than R. Since the enclosed charge is zero, from Gauss’s law we have  

  E (4r2) = 0   

     E = 0   … (13D) 
 Thus, we conclude that E = 0 at all points inside a uniformly charged conducting sphere or the 
charged spherical shell.  
 Variation of E with The Distance from the centre (r)   
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2
04

1

R

Q


 

O 

E 

r = R r 
 

10.4 ELECTRIC FIELD DUE TO A UNIFORMLY CHARGED SPHERE 
 A non-conducting uniformly charged sphere of radius R has a total charge Q uniformly distributed 
throughout its volume. Using the Gauss’s Law, Let us find the field  
 Case I: at an internal point (r < R)   

 Positive charge Q is uniformly distributed throughout 
the volume of sphere of radius R. For finding the electric field 
at a distance (r < R) from the centre, we choose a spherical 
Gaussian surface of radius r, concentric with the charge 
distribution. From symmetry the magnitude E of the electric 
field has the same value at every point on the Gaussian 

surface, and the direction of 
→

E  is radial at every point on the 
surface.  
 So, applying Gauss’s law  

 

+ 
+ + 

+ 

+ 

+ 

+ 
+ + 

+ 

+ 

+ 
+ 

+ 

+ 

+ 
+ 

+ 

Gaussian 
surface 

 
 

  = E (4r2) = 
0

Q
    

 Here,  Q = 







 3

3

4
r  = 








 3

3

4
r  ×

34 R

Q


 = 

3

3

R

Qr
 

 where  is volume density of charge. 
Therefore  

  E (4r 2) = 
0

3

3

R

Qr
  

 or,  E = r
R

Q
3

04

1


  … (13E)   

 The field increases linearly with distance from the centre 
 Case II: At an External point (r > R)  
 To find the electric field outside the charged sphere, we use a spherical Gaussian surface of 
radius r (> R). This surface encloses the entire charged sphere. So, from Gauss’s law, we have  

  E (4r 2) = 
0

Q
 

 or,   
2

04

1

r

Q
E


=   … (13F) 

 The field at points outside the sphere is the same as that of a point charge at the centre.  
 Variation of E with the distance from the centre (r )     

 E 

O 
r = R 

2
04

1

R

Q


 

r 
 

 
           CONDUCTORS 
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 A conductor contains “free” electrons, which can move freely in the material, but cannot leave it. 
Now, when an excess charge is given to an insulated conductor, it sets up electric field inside the 
conductor. The free electrons will redistribute themselves and within a fraction of a second (approx. 10-

12 s) the internal field will vanish. Thus, in electrostatic equilibrium the value of 
→

E  at all points within a 
conductor is zero. This idea, together with the Gauss’s law can be used to prove interesting facts 
regarding a conductor.  

11.1 CAVITY INSIDE A CONDCUTOR 

 Consider a charge + q0 suspended in a cavity in a conductor. Consider a Gaussian surface just 

outside the cavity and inside the conductor. 
→

E = 0 on this Gaussian surface as it is inside the conductor. 

Hence from Gauss’s law  
 

q 

– – 
– 

– 
– – 

– 
– 

– 

+ + + 
+ 

+ 

+ 

+ 

+ 
+ 

+ 
+ + + + 

+ 

+ 

+ 

+ 

+ 

+ 
+ 

+ 

Gaussian  
surface 

+ 
+ + + 

+ 
+ 

+ 

+ 

+ 

+ 

+ 
+ + + 

+ 
+ 

+ 

+ 

+ 

+ 
+ 

+ 

 

 

  
0

.


=
→→ q

SdE , we have  

        q = 0  
 This concludes that a charge of –q must reside on the metal surface of the cavity so that the sum 
of this induced charge –q and the original charge +q within the Gaussian surface is zero. In other words, 
a charge q suspended inside a cavity in a conductor induces an equal and opposite charge –q  on the 
surface of the cavity. Further as the conductor is electrically neutral, a charge +q is induced on the outer 
surface of the conductor. As field inside the conductor is zero.  
 The field lines coming from q cannot penetrate into the conductor, as shown in the above figure.  
 The same line of approach can be used to show that the field inside the cavity of a conductor is 
zero when no charge is kept inside it.  

11.2 ELECTROSTATIC SHEILDING   
 Suppose we have a very sensitive electronic instrument that we want to protect from external 
fields that might cause wrong measurements. We surround the instrument with a conducting box or we 
keep the instrument inside the cavity of a conductor. By doing this, the charge in the conductor is so 
distributed that the net electric field inside the cavity becomes zero and so instrument is protected from 
the external fields. This is called electrostatic shielding. 

 

 
 In a charged conductor the charge resides entirely on the surface. This shows that every element 
of the surface of the conductor experiences a normal outward force, which holds its charge there. This 
force is produced as a result of repulsion of the charge on the element by the similar charge on the rest 
of the surface of the conductor. Let us calculate this force.  

           FORCE ON THE SURFACE OF A CHARGED CONDUCTOR 
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 Let dS be a small element of the surface of a charged 

conductor. Let  be the surface density of charge. Let us 
consider a point P just outside the surface. The magnitude of 
the electric intensity at P is given by  

 
0


=E , and is directed along the outward drawn 

normal to the element. 

 

1

→

E  

2

→

E  

Q 
P 

dS 

1

→

E  

2

→

E  

 
 The intensity E can be considered as made up of two parts: (i) an intensity E1  due to the charge 
on the element dS, and (ii) an intensity E2  due to the charge on the rest of the surface of the conductor. 
Since their directions are the same, we have  

    E1 = E1 + E2  = 
0


 … (i)  

 Let us now consider a point Q just inside the surface. The intensity at Q may again be considered 
as made up of two parts. The intensity due to the charge on the element dS is equal and opposite to that 
at P i.e., –E1, since Q is very close to P but on the opposite side of the surface. The intensity due to the 
charge on the rest of the surface is same in magnitude and direction as at P i.e, E2 (since Q is very close 
to P). But the resultant intensity at Q must be zero, since Q lies inside the conductor. Hence  
  –E1 + E2 = 0    
 or    E1 = E2.  
 Substituting this in equation (i), we get  

  2E2 = 
0


 

     E2 = 
02


  

 This gives the outward force experienced by a unit positive charge on the elements dS due to the 

charge on the rest of the surface. Since the charge on the element is  dS, the force on dS is      

    )(2 dSEF =      = 
0

2

2

 dS
  

 Hence the force per unit area of the surface is  

         
0

2

2


=

dS

F
  … (14A)  

 Whatever the sign of , this force acts outward along the normal to the surface.  

 Now, from equation (i) E = 
0


, so that  = 0E.  

 Substituting this value of  in equation (14A), the outward force per unit area of the surface  

  = 
0

2
0

2

)(



 E
  

  = 
2

2
0E

  … (14B) 

 Hence the force per unit area (or electrostatic pressure) experienced by a charged conductor is 

2 /20 or 0E2 /2 newton/meter2 directed along the outward drawn normal to the surface.  
 
 

 
 
 Let us consider an electrostatic field E around a charged conductor. The charged conductor 

experiences a force of 0 E2/2 Newton per meter2 area, which is everywhere, directed along the outward 
drawn normal to the surface. If the conductor is placed in a medium of dielectric constant K, the normal 

           ENERGY DENSITY OF AN ELECTRIC FIELD 
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force is K0 E2/2 newton.  
 Suppose the surface is displaced through a small distance of dl meter everywhere along its 
outward normal. The work done per meter2 area of the surface  

  = 
2

2
0EK 

dl joule.       

 The volume swept out by 1 meter2 area is dl meter3. Thus the work done in producing  
dl meter3 of the field  

  
2

2
0EK

 dl joule.   

 Hence the work done is producing unit volume of the field.  

  = 
2

2
0EK

 joule  

 This work is stored as energy of strain in the field. Hence the energy per meter3,  or the energy 
density u, of the field is  

  u 2
0

2

1
EK=   … (15)  

 

 

 

 Two equal and opposite point charges placed at a short distance apart constitute an electric 
dipole.  
 

18.1  ELECTRIC DIPOLE MOMENT  

 Electric dipole moment is a vector 
→

p  directed along the axis 

of the dipole, from the negative to the positive charge.  
 The magnitude of dipole moment is  
 p = (2a) q 

 

2a 

-q +q 
→

p  

 
 

 where 2a is the distance between the two charges. … (24)  
18.2  ELECTRIC POTENTIAL DUE TO AN ELECTRIC DIPOLE     

 Suppose, the negative charge −q is placed at a point A and 
a positive charge q is placed at a point B. The separation  
AB = 2a 
 The middle point of AB is O. The potential is to be 

evaluated at a point P where OP = r and  
^

POB  = . Let AA be 

the perpendicular from A to PO and BB be the perpendicular from 
B to PO. As 2a is very small compared to r, 

    AP PA−~  = OP + OA = r + a cos   

 Similarly, BP PB−~  = OP − OB = r − a cos  

 The potential at P due to the charge −q is  

 

A B q − q 

 
O 

2a 1 
A  

r 

P 

B 

2 a  

  
)cos(4

1
~

4

1

00

1
+

−−


−=
ar

q

AP

q
V  and that due to the charge + q is  

  
)cos(4

1
~

4

1

00

2
−

−


=
ar

q

BP

q
V  

 The net potential at P due to the dipole is  
  V = V1 + V2

 
 

           ELECTRIC DIPOLE 
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      = 
1

4
0

  

q

r a

q

r a−
−

+











cos cos
 

  = 
1

4

2

0
2 2 2





qa

r a

cos

( cos )−
 ~ cos
−

p

r



4
0

2
. … (25)  

18.3  ELECTRIC FIELD DUE TO AN ELECTRIC DIPOLE     
Consider a point P at a distance r from O making an angle 

 with AB. PP1 is a small displacement in the direction of OP 
and PP2 is a small displacement perpendicular to OP. Thus 
PP1 is in radial direction and PP2 is in transverse direction. In 

going from P to P1, the angle  does not change and the 
distance OP changes from r to r + dr. Thus PP1 = dr. In going 

from P to P2, the angle  changes from  to  + d while the 

distance r remains almost constant so PP2 = r d. 

 

+q 
2a 

P 

Er 

P1 
dr 

 P2 E 

d r 

rd 

 B 
O –q A 

 
 The component of the electric field at P in the radial direction PP1 is 

 Er = 
3

0
2

0 4

cos2cos

4

1

r

p

r

p

rr

V

dr

dV




=







 






−=




−=− . 

 
The component of the electric field at P in the transverse direction PP2 is 

 E

 = 






















−=




−=


−=−

2
02 4

cos11

r

p

r

V

rdr

dV

PP

dV
 = 

p

r

sin 

4
0

3
 

 The resultant electric field at P, E = E E
r

2 2
+


 

      = 

2

3

2

3
0

sincos2

4

1







 
+







 

 r

p

r

p
  

  = 1cos3
4

1 2

3
0

+
 r

p
 … (26)  

 If the resultant field makes an angle  with the radial direction OP, we have 

 tan  = 
2

tan

cos2

sin

3

3 
=





=

r

p
r

p

E

E

r

  

 or    = 






 −

2

tan
tan 1   … (27)  

 Now consider some special cases  

 Case I:   = 0. In this case, the point P is on the axis of the dipole  

 V = 
2

04 r

p


  … (28A)  

  E = 
3

04

2

r

p


   … (28B)  

Such a position of the point is called an end-on position. 

 Case II:  = 90.  In this case, the point P is on the perpendicular bisector of the dipole  
  V = 0,   … (28C) 
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  E = 
p

r4
0

3


  … (28D) 

      tan  = 
2

tan
 =  

    = 90 
 The field is anti-parallel to the dipole axis. Such a position of the point P is called a broad side 
on position. 

18.4 DIPOLE IN AN EXTERNAL UNIFORM ELECTRIC FIELD 
 

 

2

→

F  

B 

–q 

O 

+q 
1

→

F  

→

E   

→

p  

→

E  

A 

 

 Suppose an electric dipole of dipole moment ||
→

p  = 2aq is placed in a uniform electric field 
→

E  at 

an angle . A force 
→→

= EqF 1  will act on positive charge and 2

→

F  = –
→

Eq  on the negative charge. Since 

1

→

F  and 2

→

F  are equal in magnitude but opposite in direction, we have  

  021 =+
→→

FF   

 Thus, the net force on a dipole in a uniform electric field is zero.  

 The torque of 1

→

F  about O,  

  )(11

→→→→→

== EOAqFOA  

 The torque of 2

→

F  about O,  

  )(22

→→→→→

−== EOBqFOB  

   = )(
→→

 EBO  

 The net torque acting on the dipole is  

  )()(21

→→→→→→→

+=+= EBOqEOAq  

   = 
→→→

+ EBOOAq )(  

   = )(
→→

 EBAq  

 or,    
→→→

= Ep  … (29) 

 Thus, the magnitude of the torque is  = pE sin. The direction of torque is perpendicular to the 

plane of paper and inwards. Further this torque is zero at   = 0° or  = 180°, i.e., when the dipole is 

parallel or antiparallel to 
→

E  and maximum at  = 90°.  

18.5  POTENTIAL ENERGY OF DIPOLE    

 When an electric dipole is placed in an electric field 
→

E , a torque 
→

  = 
→→

 Ep  acts on it. If we rotate 

the dipole through a small angle d, the work done by the torque is  

  dW =  d     

 or,  dW = –pEsin d  

 The work is negative as the rotation d is opposite to the torque. The change in electric potential 
energy of the dipole is therefore  
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  dU = –dW = pE sin d  

 Now at angle  = 90°, the electric potential energy of the dipole may be assumed to be zero as 
net work done by the electric forces in brining the dipole from infinity to this position will be zero.  

  dU = pEsin d from 90° to , we have  

   








=

90 90

sin dpEdU  

 or,  U() – U(90°) = pE [-sin]
90°  

 or  U() = - pEcos = –
→→

Ep .   … (30) 

 It the dipole is rotated from an angle 1 to 2, then  

 work done by external forces = U(2) – U (1)   

 or,  Wext = –pE cos2 – (pEcos1)  

 or,  Wext = pE (cos1 – cos2)   … (31) 
 Work done by electric force  

   Welectric force = – Wext = pE [cos2- cos1]  … (32) 

18.6  EQUILIBRIUM OF DIPOLE     
 When an electric dipole is placed in a uniform electric field, the net force on it is zero for any 

position of the dipole in the electric field. But torque acting on it is zero only at  = 0° and 180°. Thus, we 
can say that at these two positions of the dipole, net force or torque on it is zero or the dipole is in 

equilibrium. Of this  = 0° is the ‘stable equilibrium’ position of the dipole because potential energy in this 

position is minimum (U = –pE cos° = –pE) and when displaced from this position, a torque starts acting 
on it which is restoring in nature and which has a tendency to bring the dipole back in its equilibrium 

position. On the other hand, at  = 180°, the potential energy of the dipole is maximum (U = –pE  cos 
180° = + pE) and when it is displaced from this position, the torque has a tendency to rotate it in other 
direction. This torque is not restoring in nature. So this equilibrium is known as ‘unstable equilibrium 
position’.  

 

-q 
+q 

→

p  

 = 0° 

→

E  
→

E  
+q -q 

→

p  

 = 180° 

U = minimum = pE  

netF
→

= 
→

0 ; 
→

 = 
→

0  

U = max. = +pE  

netF
→

=
→

0 ; 
→

 = 
→

0  
 

18.7  ANGULAR SHM OF DIPOLE    
 When a dipole is suspended in a uniform electric field, it will align itself parallel to the field. Now 

if it is given a small angular displacement  about its equilibrium, the (restoring) couple will be  

  C = –pE sin   

 or,  C = – pE  [as sin  , for small )  

 or,  
2

2

dt

d
I


 = –pE    

 or,  −=


I

pE

dt

d
2

2

 

 or,  −=
 2

2

2

dt

d
   

 where     2 = 
I

pE
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 This is standard equation of angular simple harmonic motion with time-period T 











=

2
. So the 

dipole will execute angular SHM with time-period  

  
pE

I
T = 2   … (33) 

18.8  FORCE ACTING ON A DIPOLE IN AN EXTERNAL NON-UNIFORM FIELD      
 When dipole lies in a non-uniform electric field the charges of 
the dipole experience unequal forces. Therefore, the net force on the 
dipole is not equal to zero. The magnitude of the force is given by the 
negative derivative of the potential energy with respect to distance 
along the axis of the dipole 

  
ll d

Ed
p

d

dU
F

→
→→

=−= .  

 

y 

x 

 
18.8 INTERACTION BETWEEN DIPOLES   
 In this situation, one dipole is in the field of other dipole. Depending on the positions of dipoles 
relative to each other, force, couple and potential energy are different.  
    

S. 
No. 

 
Relative Position of 
Dipole   

Potential  
energy (U) 

Force (F) Couple (C) 
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 Potential of earth is often taken to be zero. If a conductor is connected to the earth, the potential 
of the conductor becomes equal to that of the earth, i.e., zero. If the conductor was at some other 
potential, charges will l flow from it to the earth or from the earth to it to bring its potential to zero. The 
figure given below shows the symbol for earthing. 

 

           EARTHING A CONDUCTOR 
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