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 The electric potential at a point in an electric field is the external work needed to bring a unit 
positive charge, with constant, from infinity (point of zero potential) to the given point. Thus,  

  V =  
0q

Wext   … (16)  

 Where Wext  is work done in moving a charge q0  from infinity to that point.   
Important points regarding electric potential  
 (i) As electric field is conservative, Wext = U .  
 So,  

  
0q

U
V =   

 or,  U = q0 V    
 Thus, the electric potential at a point is numerically equal to the potential energy per unit charge 
at that point.  
 (ii) It is a scalar having SI unit (J/C) called volt (V).  

  1V = 
C1

J1
 

 (iii) If VA and VB are the electric potentials of two points A and B, the potential difference between 
A and B is equal to VB – VA.  
 Thus the potential difference between two points, A and B, is defined as  

  VB – VA = 
0q

W
BA    

 where WA→B is the work done by an external agent in moving a positive test charge q0  from A to 
B .  
 (iv) We know that  

   V = 
0q

Wext  

 Now,  Wext = 
→→

ldF ext .    

 Since the external force is equal and opposite of the electrostatic force, we have  

  extF
→

 = –q
→

E  

 or  Wext = 
→→

ldEq .  

 The figure shows a curved path in a non-uniform field. The 
potential difference between the points A and B is given by  

       VB – VA =  – 
→→B

A

dE l.                                        … (17)  

 

dS 

E 

A 

B 

 
 Since the electrostatic field is conservative, the value of this line integral depends only on the 
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end points A and B and not on the path taken.  So the electric potential at a point can be interpreted as 
the negative of the work done by the field in displacing a unit positive charge from some reference point 
(usually taken at infinity) to the given point.  
 
14.1 ELECTRIC POTENTIAL AT A POINT DUE TO A POINT CHARGE  

 As  
→→


= r

r

q
E

3
04

1
 and   V = – 



→→r

rdE .   
 

+q 

O 

r A  

   V = –  
 

→→


−=



r r

dr
r

q
rdr

r

q
2

0
3

0 4

1

4

1
 

 or V = 
r

q

04

1


, … (18)  

 where r is the distance of A from the point charge q.   
 The electric potential at A (VA) is positive if the point charge q is positive. VA will be negative if 
the point charge q is negative.    
 
14.2  ELECTRIC POTENTIAL DUE TO A GROUP OF POINT CHARGES   
 The potential at any point due to a group of point charges is the algebraic sum of the potentials 
contributed at the same point by all the individual point charges.  
  V = V1 + V2 + V3 + …   … (19)  
 
14.3  ELECTRIC POTENTIAL DUE TO A CONTINUOUS CHARGE DISTRIBUTION    
 The electric potential due to a continuous charge distribution is the sum of potentials of all the 
infinitesimal charge elements in which the distribution may be divided.  

  = dVV   

  V =   r

dq

04
 

 
14.3.1  Electric Potential due to a charged ring  

 A charge Q is uniformly distributed over the circumference 
of a ring. Let us calculate the electric potential at an axial point at a 
distance r’ from the centre of the ring.   
The electric potential at P due to the charge element dq of the ring 
is given by  

  
2/122

00 )(4

1

4

1

rR

dq

Z

dq
dV

+
=


=  

 + 
+ 

+ 

+ 

+ 

+ 
+ + 

+ 

+ 

+ 

+ 

+ 
+ 

R 

R 

O 
r P 

22 rRz +=  

 

 Hence, the electric potential at P due to the uniformly charged ring is given by  

   
+

=
+

= dq
rRrR

dq
V

2/122
0
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4

1
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      = 
)(4
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22
0 rR

Q

+
 … (19A) 

 
14.3.2  Electric potential due to a charged disc at a point on the axis  

 A non-conducting disc of radius ‘R’ has a uniform surface charge density  C/m2. Let us calculate 
the potential at a point on the axis of the disc at a distance ‘r’ from its centre         
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The symmetry of the disc tells us that the appropriate choice of 
element is a ring of radius x and thickness dx. All points on this ring 

are at the same distance 22 rZ += x , from the point P. The charge 

on the ring is dq = dA =  (2xdx) and so the potential due to the 
ring is  

  
22

00

)2(

4

1

4

1

r

xd

Z

dq
dV

+




=


=

x

x
 

 P 

r 22 rxZ +=  

x O 

 
 Since potential is scalar, there are no components to worry about.  
 The potential due to the whole disc is given by   

  
+


=

R

O r

d
V

22
02 x

xx
    =  Rr 0

2/122

0

)(
2

+



x  

  =  rrR −+


 2/122

0

)(
2

 … (19B)  

 Let us see how this expression behaves at large distances, when r > > R. We use binomial theorem 

(1 + x)n  1 + nx for small x to expand the first term  

   (R2 + r2)1/2 = r [1 + 2/1

2

2

]
r

R
 

    







++ ...

2
1

2

2

r

R
r  

 Substituting this into the expression for V, we find  

  
r

Q
V

04

1


= , where Q = r2 is the total charge on the disc.  

 Thus, we conclude that at large distances, the potential due to the disc is the same as that of a 
point charge Q.      

    
14.3.3   Electric Potential due to a closed disc at a point on the edge.  
 Let us calculate the potential at the edge of a thin disc of radius ‘R’ carrying a uniformly 

distributed charge with surface density           
 Let AB be a diameter and A be a point where the potential 
is to be calculated. From A as centre, we draw two arcs of radii r 
and r + dr  as shown. The infinitesimal region between these two 

arcs is an element whose area is dA = (2r) dr, where 2 is the angle 
subtended by this element PQ at the point A. Potential at A due to 
the element PQ is   

  
000 4

2

4

2

4 


=




=




=

dr

r

drr

r

dA
dV   

 From  APB, we have   

 P 

r 

 
B 

Q 

A • 

 
    r = 2R cos  

 or,  dr = –2R sin  d   
 Hence 

  
04

sin4



−
=

dR
dV   
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  





−=

0

2/ 0

sin dR
V  

             
0

2/
0

sincos


+−



−=

R
V  V = 

0

R
 … (19C) 

 
14.3.4  Electric Potential due to a shell  
 A shell of radius R has a charge Q uniformly distributed over its surface. Let us calculate the 
potential at a point  
 (a) outside the shell; (r > R)   (b) inside the shell (r < R).    

 (a) At points outside a uniform spherical distribution, the electric field is r
r

Q
E ˆ

4

1
2

0
=

→

 

 since 
→

E  is radial, 
→

E .
→

rd  = Edr  
 since V (  ) = 0, we have  

  



=−

r

dr
r

Q
VrV

2
04

)()(   
r

r

Q










−


=

1

4 0

 

                 V = 
r

Q

04

1


 (r > R)   … (19D) 

 We see that the potential due to a uniformly charged shell is the same as that due to a point 
charge Q at the centre of the shell.  
 
 (b) At an Internal Point  
 At points inside the shell, E = 0. So, the work done in bringing a unit positive charge from a point 
on the surface to any point inside the shell is zero. Thus, the potential has a fixed value at all points 
within the spherical shell and is equal to the potential at the surface.  

  V =
R

Q

04

1


 … (19E) 

 Variation of electric potential with the distance from the centre (r)    
 

r r = R O 

V 

R

Q

04

1


 

 
 All the above results hold for a “conducting sphere’ also whose charge lies entirely on the outer 

surface.  
 
14.3.5  Electric Potential due to a non-conducting charged sphere  
 A charge Q is uniformly distributed throughout a non-conducting spherical volume of radius R. 
Let us find expressions for the potential at an (a) external point (r > R); (b) internal point (r < R); where r 
is the distance of the point from the centre of the sphere.     
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 (a) At an external point  
 Let O be the centre of a non-conducting sphere 
of radius R, having a charge Q distributed uniformly 
over its entire volume. 
 Let P be a point distant r ( > R) from O at which 

potential is required.  Let  be the charge density  
 Let us divide the sphere into a large number of 
thin concentric shells carrying charges q1, q2, q3 … etc. 
The potential at the point P due to the shell of charge 

q1 is 
r

q1

04

1


 

 
 

R 

r P 

O 

 

 Now, potential is a scalar quantity. Therefore the potentials V due to the whole sphere is equal 
to the sum of the potentials due to all the shells.  

      +


+


=
r

q

r

q
V 2

0

1

0 4

1

4

1
…  

         = 
r04

1


 [q1 + q2 + q3 + …..]       

 But q1 + q2 + q3 + … = Q, the charge on the sphere.  

       V = 
r

Q

04

1


  … (19F) 

 
 (b) Potential at an internal point     

 Suppose the point P lies inside the sphere at a distance r from the 
centre O, If we draw a concentric sphere through the point P, the point P 
will be external for the solid sphere of radius r, and internal for the outer 
spherical shell of internal radius r and external radius R.   

 The charge on the inner solid sphere is 
3

4
r3. Therefore, the 

potential V1 at P due to this sphere is given by  

 dx 

R 

r P 

x 

 

      
0
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


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
=

r

r

r
V   

 Let us now find the potential at P due to the outer spherical shell. Let us divide this shell into a 
number of thin concentric shells and consider one such shell of radius x and infinitesimally small 

thickness dx. The volume of this shell = surface area × thickness = 4 x2d x. The charge on this shell, dq = 

4x2 dx. The potential at P due to this shell  

  dV2 =  
x

xx

x




=



)(4

4

1

4

1 2

00

ddq
 

    = 
0

 xxd
  

 The potential V2 at P due to the whole shell of internal radius r and external radius R is given by            

           


=

R

r

d
V
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 = 

R

r
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 Since the potential is a scalar quantity, the total potential V at P is given by  
    V  = V1 + V2     

    = 
0

22

0

2

2

)(

3 

−
+



 rRr
  

   = 
0

22

6

)3(



− rR
 

 But      = 
3

3

4
R

Q



  

     V  = 
3

0 24

1

R

Q


 [3R2 – r2]  … (19G) 

 

 

 
 In rectangular components, the electric field is  

  kEjEiEE zy
ˆˆˆ ++=

→

x ;  

 and an infinitesimal displacement is kdzjdyidSd ˆˆˆ ++=
→

x   

 Thus,  

  dV = – 
→→

SdE .  … (20) 

  = – [Ex dx + Ey dy + Ez dz] 
 for a displacement in the x-direction,   
  dy  = dz = 0 and so  
  dV = –Ex dx. Therefore,  

  Ex= – 
constant,zyd

dV









x
  

 A derivative in which all variables except one are held constant is called partial derivative and is 

written with  instead of d. The electric field is, therefore,  

  k
z

V
j

y

V
i

V
E ˆˆˆ




−




−




−=

→

x
 … (21)  

 

 

 
 If we join the points in an electric field, which are at same potential, the surface (or curve) 
obtained is known as equipotential surface (curve).  
 Important Points Regarding Equipotential surfaces  
  (i)  The lines of forces are always normal to equipotential surfaces 
 (ii)  The net work done in taking a charge from A to B is zero if A and B are on same 
equipotential surface.  
Examples 
 (i)  In the field of a point charge, the equipotential surfaces are spheres centered on the 

point charge.  
 (ii)  In a uniform electric field, the equipotential surfaces are planes which are perpendicular 

to the field lines. 

           CALCULATION OF ELECTRIC FIELD FROM ELECTRIC POTENTIAL 

 

15 

           EQUIPOTENTIAL SURFACES 
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 (iii)  In the field of an infinite line charge, the equipotential surfaces are co-axial cylinders 
having their axes at the line charge.  

 (iv)  The surface of a conductor is an equipotential surface and the inside of conductor is 
equipotential space. Hence there is no electric field (and charge) inside the conductor’s 
surface. The lines of forces are always normal to the surface of a conductor.  

 

 
 

 If a charge is moved between two points in an 
electric field, work is usually done against the field or by 
the field. In the figure, if a charge +q is moved from B to C 
in the electric field of charge +Q, the work will have to be 
done by some outside agency in pushing the charge +q 
against the force of field of +Q.    

 

B + q 

C  

 This situation is very similar to that of a mass moved in gravitational field of earth away from it. 
Work done against the gravitational pull of earth is stored in Gravitational potential energy  and can be 
recovered back. Similarly in electric field, work done against an electric field is stored in the form of 
electric potential energy & can be recovered back. If the charge +q is taken back from C to B, the electric 
force will try to accelerate the charge and hence to recover the potential stored in the form of kinetic 
energy.      
 As the work done against an electric field can be recovered back, electrostatic forces and fields 
fall under the category of conservative forces and fields. Another property of these fields is that the work 
done is independent of path taken from one point to the another.  
 
17.1  POTENTIAL ENERGY OF A SYSTEM OF TWO POINT CHARGES  
 The potential energy possessed by a system of two-point charges q1 and q2 separated by a 
distance r is the work done required to bring them to this arrangements from infinity. This electrostatic 
potential energy is given by  

  
r

qq
U

0

21

4
= … (22)  

 

17.2  ELECTRIC POTENTIAL ENERGY OF A SYSTEM OF POINT CHARGES   
 The electric potential energy of such a system is the work done in assembling this system 
starting from infinite separation between any two-point charges.  
 For a system of point charges q1, q2 …. qn, the potential energy is  

    
= =




=
n

i

n

j ij

ji
ji

r

qq
U

1 1 0

)(
42

1
  … (23)  

 If simply means that we have to consider all the pairs that are possible.  
 
Important points regarding Electrostatic potetnail energy   
 (i)  Work done required by an external agency to move a charge q from A to B in an electric 

field with constant speed  

  WA→B = q [VB – VA]    
 (ii)  When a charge q is let free in an electric field, it loses potential energy and gains kinetic 

energy, if it goes from A to B,  then loss in potential energy = gain in kinetic energy  

           ELECTRIC POTENTIAL ENERGY 

 

17 



  

                 
         8                  MAHESH SIR’S NOTES  -  7798364224  

 

 or,  q (VB – VA) = 
2

1
 22

2

1
– AB mVmV  

 

 
 

 When charge is given to an isolated body, its potential increases i.e.,  
  VQ    

 or,  Q = CV  … (34)  
 where C is a constant called capacity of the body.  
 if  V = 1  then C = Q,  
 So Capacity of a body is numerically equal to the charge required to raise its potential by unity.  
 In SI system, the unit of capacity is (Coulomb/volt) and is called farad (F).  

  1F = 
V

C

1

1
 = 

potentialofesu
300

3

chargeofesu103 9











 = 9 × 1011 esu of capacity.    

 The capacity of a body is independent of the charge given to it and depends on its shape and size 
only.  
 

 

 

 Capacitor is an arrangement of two conductors carrying charges of equal magnitude and 
opposite sign and separated by an insulating medium. The following points may be carefully noted 
 (i) The net charge on the capacitor as a whole is zero. When we say that a capacitor has a charge 
Q, we mean that positively charged conductor has a charge +Q and the negatively charged conductor 
has a charge –Q.     
 (ii) The positively charged conductor is at a higher potential than negatively charged conductor. 
The potential difference V between the conductors is proportional to the magnitude of charge Q and 
the ratio Q/V is known as capacitance C of the capacitor.  

  C =  
V

Q
   

 Unit of capacitance is farad (F). The capacitance is usually measured in microfarad F.  

  1F = 10–6F  

 (iii) In a circuit, a capacitor is represented by the symbol:–              

 
21.1 PARALLEL PLATE CAPACITOR  

 A parallel plate capacitor consists of two metal plates placed 
parallel to each other and separated by a distance d that is very 
small as compared to the dimensions of the plates. The area of each 
plate is A. The electric field between the plates is given by  

  
000 22 


=




+




=E  

 Where  is surface charge density on either plate.  
 the potential difference (V) between plates is given by  
 V = Ed.    

 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

– 
– 
– 
– 
– 
– 
– 
– 
 

d 

 

           CAPACITY OF AN ISOLATED CONDUCTOR 
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 or,  V = d
A

Q
d

00 
=




  

 Hence,  C = 
d

A

V

Q 0
=   … (35)   

 
21.2  CYLINDRICAL CAPACITOR  

 Cylindrical capacitor consists of two co-axial cylinders of 
radii a and b and length l. If a charge q is given to the inner cylinder, 
induced charge –q will reach to the inner surface of the outer 
cylinder. By symmetry, the electric field in region between the 
cylinders is radially outward.  
      By Gauss’s theorem, the electric field at a distance r from the 
axis of the cylinders is given by   

          
r

q
E

l02

1


=  

 The potential difference between the cylinders is given by 
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         
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b
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a

b
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  = 



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





−

b

a
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q
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l02
 

 or,    V  = 











=

a

b
n

V

q

l

l02
 … (36)  

 
21.3  SPHERICAL CAPACITOR  

 A spherical capacitor consists of two concentric spheres of 
radii a and b as shown. The inner sphere is positively charged to 
potential V and outer sphere is at zero potential.  
 The inner surface of the outer sphere has an equal negative 
charge.  
 The potential difference between the spheres is  

  V  = 
b

Q

a

Q

00 44 
−


  

 

b 

a 
+ 

+ 

+ 

+ 
+ 

+ 

+ 
+ 

+ 

 

 Hence, capacitance  

  C = 
ab

ab

V

Q

−


= 04

 … (37)  

 
21.4   ISOLATED SPHERE AS A CAPACITOR 
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 A conducting sphere of radius R carrying a charge Q can be 
treated as a capacitor with high potential conductor as the sphere 
itself and the low potential conductor as a sphere of infinite radius. 
The potential difference between these two spheres is  

  V = 
R

Q

04
 – 0 

 Hence, capacitance C = 
V

Q
 = 40R   … (38) 

 

R 
Q 

 
  

 

 

 If dq charge is given to a capacitor at potential V  
  dW = dq (V)  

 or,   







=

q

dq
C

q
E

0

 [ q = CV]  

 or,  qVCV
C

q
W

2

1

2

1

2

2
2

===   

 This work is stored as electrical potential energy i.e., a capacitor stores electrical energy  

  U = 
2

1
CV2 = 

C

q

2

2

 = 
2

1
 qV  … (39) 

 
22.1 ENERGY DENSITY OF A CHARGED CAPACITOR  
 This energy is note localized on the charges or the plates but is distributed in the field. Since in 
case of a parallel plate capacitor, the electric field is only between the plates, i.e., in a volume (A × d), 
the energy density 

  
Ad

V

d

A

dA

CV
U

UE

2
0

2

2

12

1

volume








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
==  

 or,  2
0

2

0
2

1

2

1
E

d

V
UE =








=   








= E

d

v
  … (40)  

 
22.2  FORCE BETWEEN THE PLATES OF A CAPACITOR  
 In a capacitor as plates carry equal and opposite charges, there is a force of attraction between 
the plates. To calculate this force, we use the fact that the electric field is conservative and in a 

conservative field F = –
xd

dU
. In case of parallel plate capacitor  

  U = 
A

q

C

q

0

22

2

1

2 
=

x
 [ as 

x

A
C 0

= ] 

 SO,    









−= x

x A

q

d

d
F

0

2

2
 = 

A

q

0

2

2

1



−
  … (41)  

 The negative sign implies that the force is attractive.  
 

           ENERGY STORED IN CHARGED CAPACITOR 
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 When certain non-conducting materials such as glass, paper or plastic are introduced between 
the plates of a capacitor, its capacity increases. These materials are called ‘dielectrics’ and the ratio of 
capacity of a capacitor when completely filled with dielectric C to that without dielectric C0 is called 

‘dielectric constant K, or relative permitivity r  or specific inductive capacity (S. I. C) i.e.,  

  K =  
0C

C
  … (42)  

 The effect of dielectric on other physical quantities such as charges, potential difference, field 
and energy associated with a capacitor depends on the fact that whether the charge capacitor is isolated 
(i.e.,  charge held constant) or battery attached (i.e., potential is held constant).  
23.1  INTRODUCTION OF A DIELECTRIC SLAB OF DIELECTRIC CONSTANT K BETWEEN THE PLATES  
 (a) When the battery is disconnected  
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 Let q0, C0, V0, E0 and U0 represents the charge, capacity, potential difference electric field and 
energy associated with charged air capacitor respectively. With the introduction of a dielectric slab of 
dielectric constant K between the plates and the battery disconnected.  
 (i)  Charge remains constant, i.e., q = q0 , as in an isolated system charge is conserved.  
 (ii)  Capacity increases, i.e., C = KC0, as by the presence of a dielectric capacity becomes K 

times.    

 (iii) potential difference between the plates decreases, i.e., V = 








K

V0 ,as  

  
K

V

KC

q

C

q
V 0

0

0 ===  [ q = q0 and C = KC0]  

 (iv) Field between the plates decreases, i.e., 
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E
E 0= , as  
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  and  E0 = 
d
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 (v) Energy stored in the capacitor decreases i.e., 
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 (b) When the battery remains connected (potential is held constant)  
 (i)  Potential difference remains constant, i.e., V = V0, as battery is a source of constant 

potential difference.  
 (ii)  Capacity increases, i.e., C = KC0, as by presence of a dielectric capacity becomes K times.    
 (iii) Charge on capacitor increases, i.e., q = Kq0 , as  
   q = CV = (KC0)V = Kq0 [ q0 = C0v]    
 (iv) Electric field remains unchanged, i.e.,  E = E0, as  

   E = 0
0 E

d

V

d

V
==  [as V = V0 and 0

0 E
d

V
= ]  

 (v)  Energy stored in the capacitor increases,  

  i.e., U = KU0, as     U = 
2

1
 CV2 = 

2

1
 (KC0) (V0)2  = 

2

1
 KU0   

  [as C = KC0 and 2

000
2

1
VCU = ]  

 

 

 
 Replacing a combination of capacitors by a single equivalent capacitor is called ‘grouping of 
capacitors’. It simplifies the problem and is divided into two types  
24.1  SERIES COMBINATION OF CAPACITORS.  
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 Capacitors are said to be in series if charge on each individual capacitor is same.  
 In this situation,  
      V = V1 + V2 + V3   

 We know, V = 








C

q
, so  
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++=   

 or,     
321

1111

CCCC
++=   … (43) 

 In case the two capacitors connected in series, we have  

   V1 = V
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C
VV

CC

C











+
=











+ 21

1
2

21

2 ;   

 
 
 
 
   

           GROUPING OF CAPACITORS 

 

24 



  

                 
         13                  MAHESH SIR’S NOTES  -  7798364224  

 

24.2 PARALLEL COMBINATION OF CAPACITORS  
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 When capacitors are connected in parallel, the potential difference V across each is same and 
the charge on C1, C2 is different, i.e., Q1 and Q2,    
 The total charge Q is given as  
  Q = Q1 + Q2  

  Q = C1V + C2V  or 21 CC
V

Q
+=   

 Hence, the equivalent capacitance between a and b is  
   C = C1 + C2  
 The charges on capacitors is given as  

  Q1 = Q
CC

C
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+ 21

1   

  Q2 = Q
CC

C
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












+ 21

2  

 In case of more than two capacitors.  
  C = C1 + C2 + C3 +  …..  … (44)  

 

 
 

 If there are two spherical conductors of radii R1 and R2 at potentials V1 and V2 respectively, far 
apart from each-other (so that charge on one does not affect the potential of the other). The charge on 
them will be  
  q1 = C1V1 and  q2 = C2 V2   
 The total charge of the system  
  q = q1 + q2  
 The total capacity of the system  
  C = C1 + C2  
 Now if they are connected through a wire, charge will flow from conductor at higher potential to 
that at lower potential till both acquire same potential.  

  V = 
21

2211
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 ( C  R)  

 

 If q1 and q2 are the charges on two conductors after sharing, then  

  q1 = C1V and q2 = C2V , where  

  q1 + q2
  = (q1 + q2) = q  

 So,  
2
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2

1
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==
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 [ as C R)  
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 i.e., charge is shared in proportion to capacity.  
 
25.1 LOSS OF ENERGY DURING REDISTRIBUTION OF CHARGE  
 Initial potential energy of the system is  

  UI = 2
22

2
11

2

1

2

1
VCVC +  

 Final potential energy = UF = 
2

1
 (C1 + C2) V 2   

 Putting V = 
21

2211

CC

VCVC

+

+
 and simplifying, we get  

  UF – UI = –
)(2 21

21

CC

CC

+
 (V1 ~ V2)2  

 Now as C1, C2 and (V1 ~ V2)2 are always positive, there is decrease in energy of the system, i.e., in 
sharing energy is lost. This energy is lost mainly as heat when charge flows from one body to the other 
through the connecting wire and also as light and sound if sparking takes place.  

 

 

 

 Van de graff generator is a machine that can build up high voltages of the order of a few million 
volts. The resulting large electric fields are used to accelerate charged particles like electrons, protons 
and ions to high energies needed for nuclear transmutation of one element into other. The high energy 
particles can be used to probe the small scale structure of matter. 
 
PRINCIPLE   
 Let us consider a large spherical conducting shell of radius R with uniform charge density. Let the 
charge on the shell is Q. The corresponding potential due to the shell at various points having distance r 
from the centre of the shell is given by  

  
r

Q
v

04
=  Rr   

  
R

Q
v

04
=   Rr   

 Next imagine that a sphere of radius ( )Rrr 00  carrying a total charge q (uniformly distributed 

over it) is introduced in the larger conducting shell and placed at its centre. Potential due to inner sphere 
at all points distant r from centre is given by  
  

 
r

q
v

04
=   0rr   

 Applying superposition theorem, the potential due to the system (sphere inside the shell) is  
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 the potential difference between the points r = r0 and r = R is  
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  ( ) ( ) 

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


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=−

Rr

q
Rvrv

11

4 00

0     … (45) 

 Thus for positive value of q, whatever be the magnitude and sign of Q, the small sphere is at a 
higher potential than the shell. If inner and outer conductors are connected, charge would flow from the 
small sphere to the shell. By repeating the process, a large amount of charge can be piled up on the shell, 
thereby raising its potential. 
 
CONSTRUCTION AND WORKING   
 To implement the principle in practice a large spherical conducting shell with radius of few metres 
is supported on an insulating column several metres high. The conducting shell is made highly polished 
and is known as metal dome. There are two pulleys, one at the centre of the shell and the other at the 
ground. A long narrow belt made of insulating material passes over the pulleys. Charge is sprayed on to 
the belt at the lower pulley by means of a discharge through a metallic brush with sharp points 
connected to a high voltage source. The belt is moved rapidly by a motor driving the lower pulley. The 
positive charge is carried upward by the belt and collected by a metallic brush connected to the shell. As 
more and more charge is transferred to the sphere S, its potential goes on rising. In this way, the shell 
builds up a huge voltage of the order of mega volts. 
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