

Date :

Marks :

TEST ID: XIICH0602 CHEMISTRY OF FLEMENTS

6.GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF ELEMENTS

Single Correct Answer Type

31. Which pair of elements can form alloy? a) Zn and Pb b) Fe and Hg c) Fe and C d) C and Pt 32. Which ore can be best concentrated by froth floatation process? b) Cassiterite a) Malachite c) Galena d) Magnetite 33. The mass of carbon anode consumed (giving only carbon dioxide) in the production of 270 kg of aluminium metal from bauxite by the hall process is (Atomic mass of Al=27) d) 90 kg a) 180kg b) 270 kg c) 540 kg 34. Carbon monoxide reduction process is used for the extraction of: b) Ag d) K a) Cu c) Na 35. Load stone is one ore of a) Iron c) Silicon d) Tin b) Lead 36. One of the following metals forms a volatile compound and this property is taken advantage for its extraction. This metals is a) Cobalt b) Iron c) Tungsten d) Nickel 37. Carbon reduction is used for the extraction of: c) Al a) Fe b) K d) None of these 38. The phenomenon in which white transparent crystal changes into white powder is known as: a) Sublimation b) Allotropy c) Efflorescence d) deliquescence 39. Which is used for the extraction of cadmium from cadmium sulphide? b) Reduction c) Oxidation a) Roasting d) Electrolysis 40. Formula of magnetite is a) Fe_3O_4 b) Fe_2O_3 c) FeS₂ d) FeCO₃ 41. When MnO₂ is fused with KOH, a coloured compound is formed, the compound and its colour is: a) K₂MnO₄, purple green b) KMnO₄, purple c) Mn_2O_3 , brown d) Mn₃O₄, black 42. Which is not a basic flux? d) MgO c) SiO_2 a) CaCO₃ b) CaO 43. An ore of tin containing $FeCrO_4$ is concentrated by: a) Magnetic separation b) Froth floatation c) Electrostatic method d) Gravity separation 44. Orford process is used in extraction of: a) Pt b) Co c) Fe d) Ni 45. The salt which is least likely to be found in minerals is: a) Sulphate b) Acetate c) Chloride d) Sulphide 46. The second most common element on the earth is: a) Silicon b) Hydrogen c) Nitrogen d) Oxygen 47. An ore of tin containing $FeCrO_4$ is concentrated by a) Electrostatic method b) Gravity separation c) Magnetic separation d) Forth floatation 48. Alkaline earth metals are not found free in nature because of: a) Their high b. p. b) Their low b. p.

	c) Thermal instability					
	d) Their great chemical activity					
49.	Alloy is an example of:					
	a) Gel	b) Aerosol	c) Solid sol	d) Emulsion		
50.	Cinnabar is an ore of					
	a) Pb	b) Hg	c) Cu	d) Zn		
51.	Which element occurs in	n free state in nature?				
	a) Fe	b) Co	c) Pt	d) Ni		
52.	Aluminothermic process is used for the extraction of metals, whose oxides are:					
	a) Fusible					
	b) Not easily reduced by	carbon				
	c) Not easily reduced by	hydrogen				
	d) Strongly basic					
53.	Bauxite ore is concentra	ted by				
	a) Froth floatation		b) Electromagnetic sepa	ration		
	c) Chemical separation		d) Hydraulic separation			
54.	Which process is used for	or benefication of ores?				
	a) Process of removal of	impurities				
	b) Process of heating ore	e at high te <mark>mpera</mark> ture				
	c) Extraction of metal fr	om ore				
	d) None of the above					
55.	Extraction for zinc from	zinc blende is achived by				
	a) Electrolytic reduction	1				
	b) Roasting following by	reduction with carbon				
	c) Roasting followed by	reduction with another m	etal			
	d) Roasting followed by <mark>self-reduction</mark>					
56.	Auto-reduction process	is used in the extraction of	f			
	a) Cu and Hg	b) Zn and Hg	c) Cu and Al	d) Fe and Pb		
57.	Thomas slag is					
	a) Ca ₃ (PO ₄) ₂ .2H ₂ O	b) $Ca_3(PO_4)_2$. $CaSiO_3$	c) MgSiO ₃	d) CaSiO ₃		
58.	Metals are good conductors of electricity because they contain					
	a) Ionic bonds		b) A network structure			
	c) Very few valence elec	trons	d) Free electrons			
59.	Liquation is used to puri	ify:				
	a) Hg	b) Sn	c) Bi	d) All of these		
60.	The most abundant met	al in the earth crust is:				
	a) Na	b) Ca	c) Al	d) Fe		

Date : Marks : TEST ID: XIICH0602 CHEMISTRY

GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF ELEMENTS

ANSWER KEY

31)	С	32)	С	33)	d	34)	а
35)	а	36)	d	37)	а	38)	С
39)	b	40)	а	41)	а	42)	С
43)	а	44)	d	45)	b	46)	а
47)	С	48)	d	49)	С	50)	b
51)	С	52)	b	53)	С	54)	а
55)	b	56)	а	57)	b	58)	d
59)	d	60)	С				

SMARTLEARN COACHING

Date : Marks : TEST ID: XIICH0602 CHEMISTRY

GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF ELEMENTS

HINTS AND SOLUTIONS

31	(c) Fe-C form alloy					
32						
52	Galena is PhS: Sulphide ores are concentrated by froth floatation process					
33	(d)					
	In Hall and Heroult process					
	$2Al_2O_2 \rightarrow 4Al + 3O_2$					
	$4C + 3O_2 \rightarrow 2CO_2 + 2CO \uparrow$					
	$2Al_2O_3 + 4C \rightarrow 4Al + 2CO_2 + 2CO$					
Only for removal of CO_2 , following equation is possible						
	$2Al_2O_3 + 3C \rightarrow 4Al + 3CO_2$					
	$3 \times 12 = 36$ $4 \times 27 = 108$					
	∵For 108 g of Al, required amount of C = 36g					
	: For 270 g of required amount of $C = \frac{36}{100} \times 270 = 90$ g					
34	(a)					
-	$G_{\rm H}O + GO \stackrel{\Delta}{\to} G_{\rm H} + GO \stackrel{\Delta}{\to}$					
25	$Cu0 + C0 \rightarrow Cu + C0_2 $					
55	(d) Load stone (magnetite Eq. ()) is an ore of iron					
36	(d) $(\text{Inaglience, } \text{Fe}_3\text{O}_4)$ is an ofe of from					
50	Mond's process for refining of Ni is an example of vanour phase refining					
37	(a)					
57	Carbon reduction process is used for extraction of less electropositive metals like Pb. Fe. Zn. Sb. Cu.					
	etc., from their ores.					
38						
	The phenomenon of efflorescence involves spontaneous loss of water molecules from a crystal.					
39	(b)					
	Cd is found as traces in most Zn ores, and is extracted from these.					
	$Zn_{(solid)} + Cd_{(solution)}^{2+} \rightarrow Zn_{(solution)}^{2+} + Cd_{(solid)}; E^{\circ} = 0.36 V$					
41	(a)					
	$2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$					
	Purple green					
42	(c)					
	SiO ₂ is an acidic flux.					
43	(a)					
	$FeCrO_4$ is magnetic impurity.					
44	(d)					
	Extraction of Ni involves Electrolytic Process, Oxford Process, Mond's Process and German					
	Process.4					
45	(D) A satata of all motols and calcula in sustan					
16	Acetate of all metals are soluble in water.					
40	(d)					

	do
47	(c)
	Electromagnetic separation is used when either the ore or the impurities associated with it, are magnetic in nature
48	(d)
	Alkaline earth metals are very reactive and are found in combined state only in nature.
49	(c)
	Dispersion of solid in solid is called solid sol.
51	(c)
	Pt is noble metal, other noble metals are Au, Ag.
52	(b)
	Alumino-thermic process is commonly used for those metals which have very high m.pt. and are to be extracted from their oxides and their reduction with carbon is not satisfactory.
53	(c)
	Bauxite ore is concentrated by chemical separation or leaching. In this, powdered ore is treated
- 4	with a suitable reagent which can dissolve the ore but not the impurities
54	(a) Devening on her effection of the involves read of involvities from our
FF	Dressing or benefication of ore involves removal of impurities from ore.
22	(D) Zing blands is reacted and then treated with sales for the reduction
	Δ
	$3ZnS + 3O_0 \longrightarrow 2ZnO + 2SO_2 \uparrow$
	$ZnO + C \xrightarrow{\Delta} Zn + CO \uparrow$
56	(a)
	$2HgS + 3O_2 \rightarrow 2HgO + 3SO_2$
	$2 \text{HgO} \xrightarrow{\Delta} 2 \text{Hg} + \text{O}_2$
	$2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2$
	$2Cu_2O + Cu_2S \rightarrow 6Cu + SO_2$
57	(b)
	Mixture of calcium phosphate and calcium silicate is known as Thomas slag
58	(d)
	Metals are good conductor of electricity because they contain free electrons
59	
	Purification of Hg, Sn and Bi involves liquation.
60	(c)
	The abundance of elements in earth crust follow the order $0 > Si > Al > Fe$.

55 SMARTLEARN COACHING