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 In earlier lessons we found it convenient to describe the interaction between charged objects in 

terms of electric fields. Recall that an electric field surrounds an electric charge. The region of space 

surrounding a moving charge includes a magnetic field in addition to the electric field. A magnetic field 

also surrounds a magnetic substance.  

 In order to describe any type of field, we must define its magnitude, or strength, and its direction.  

 Magnetic field is the region surrounding a moving charge in which its magnetic effects are 

perceptible on a moving charge (electric current). Magnetic field intensity is a vector quantity and also 

known as magnetic induction vector. It is represented by 
→

B .  

  Lines of magnetic induction may be drawn in the same way as lines of electric field. The number 

of lines per unit area crossing a small area perpendicular to the direction of the induction being numerically 

equal to 
→

B  . The number of lines of 
→

B  crossing a given area is referred to as the magnetic flux linked with 

that area. For this reason 
→

B  is also called magnetic flux density.  

 There are two methods of calculating magnetic field at some point. One is Biot Savart law which 

gives the magnetic field due to an infinitesimally small current carrying wire at some point and the another 

is Ampere’s law, which is useful in calculating the magnetic field of a symmetric configuration carrying 

a steady current.  

 The unit of magnetic field is weber / m2  and is known as tesla (T) in the SI system.  

 

 

   

 Biot-Savart law gives the magnetic induction due to 

an infinitesimal current element.  

 Let AB be a conductor of an arbitrary shape carrying a 

current I, and P be a point in vacuum at which the field is to 

be determined. Let us divide the conductor into infinitesimal 

current–elements. Let 
→

r  be a displacement vector from the 

element to the point P.     

 According to ‘Biot-Savart Law’, the magnetic field 

induction 
→

Bd  at P due to the current element 
→

ld is given by  

 

 

P 

→

ld  

A 

I 

I 

B 

→

Bd  
→

r  

 

  
3r

l )(
→→

→ 


rdI
Bd  

 or,  
→

Bd  = k
3

)(

r

rdI
→→

l
,   

 where k is a constant of proportionality. Here 
→

ld  vector points in the direction of current I. 

 In S.I units,  k = 
metreamp

Wb
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       
3

0 )(

4 r

rdI
Bd

→→
→ 




=

l
 … (1) 

 Equation (1) is the vector form of the Biot Savart Law. The magnitude of the field induction at P is given 

by   

      
2

0 sin

4 r

Id
dB






=

l
,  

 where  is the angle between 
→

ld  and 
→

r .  

 If the medium is other than air or vacuum, the magnetic induction is  

     
3

0 )(

4 r

rdI
Bd r

→→
→ 




=

l
,  … (2) 

 where r is relative permeability of the medium and is a dimensionless quantity.  

 

 

 

3.1  FIELD DUE TO A STRAIGHT WIRE OF FINITE LENGTH 
 Consider a straight wire segment carrying a current I and there is a point P at which magnetic field is to be 

calculated is as shown in the figure. This wire segment makes angle  and  at that point with normal OP.  Consider 

an element of length dy at a distance y from O and distance of this element from point P is r and line joining P to 

Q makes an angle  with the direction of current as shown in figure. Using Biot-Savart Law magnetic field at point 

P due to small current element is given by 

  






 




=

2

0 sin

4 r

dyI
dB  

 As every element of the wire contributes to 
→

B  in the same 

direction, we have    

    B = 




4

0I
 


B

A
r

dy
2

sin
                     … (i)  

 From the triangle OPQ as shown in diagram, we have    

   y  = d tan    

 

 

 
 

P 
d 

B 

I 

y 

dy 

A 

r 

 
O 

Q 

 

 
 or,  dy = d sec2d  

 and in same triangle,   

   r  = d sec  and  = (90° – ), where  is angle between line OP and PQ   

Now equation (i) can be written in this form  

    B  = 


−





d

d

I
cos

4

0  

 or,   
d

I
B




=

4

0  [sin  + sin ] … (3) 

 Direction of 
→

B : The direction of magnetic field is determined by the cross product of the vector 
→

lid  with 
→

r . Therefore, at point P, the direction of the magnetic field due to the whole conductor will be perpendicular to the 

plane of paper and going into the plane.    

 Right-hand Thumb Rule: The direction of B  at a point P due to a long, straight wire can be found by the 

right-hand thumb rule. The direction of magnetic field is perpendicular to the plane containing wire and 

perpendicular from the point. The orientation of magnetic field is given by the direction of curl fingers if we stretch 

thumb along the wire in the direction of current. Refer  figure.  
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i 

P 

i 

P 

 
 Conventionally, the direction of the field perpendicular to the plane of the paper is represented by  if into 

the page and by  • if out of the page. 

 Now consider some special cases involving the application of equation (3)   

 Case I:  When the point P is on perpendicular bisector  

 In this case angle  =  , using result of equation  (3) , the 

magnetic field is   

       B = 



sin

2

4

0

d

I
  

 where sin  = 
22 4dL

L

+
  

 

L 

I 

d 

 

 
 

P 

 
 Case II:  When wire is of infinite length     

 In this case  =  = 90°, using result of equation (3), the magnetic 

field is  

       B  = d

I2

4

0





  

 

 

L 

I 

d 

 

 

 
 Case III:  When the point P lies along the length of wire (but not on it):    

 
A B 

→

lid  

• 

P 

r  

 If the point is along the length of the wire (but not on it), then as 
→

ld  and 
→

r  will either be parallel or 

antiparallel, i.e.,  = 0 or , so 
→→

 rid l = 0 and hence using equation (1) 

  
→→

=

B

A

BdB  = 0 

 

 

 

 Consider a circular loop of radius R and carrying a steady current I. We have to find out magnetic field at 

the axial point P, which is at distance x from the centre of the loop.   
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r 

 

O 

R 

dBcos 

dB 

dBsin  

dB 

 
 

x 

→

lid  

P 

 

 Consider an element 
→

lId of the loop as shown in figure, and the distance of point P from current element 

is r. The magnetic field at P due to this current element from the equation (1) can be given by, 

  
3r

l
→→

→ 




=

rId
Bd

4

0  

 In case of point on the axis of a circular coil, as for every current element there is a symmetrically situated 

opposite element, the component of the field perpendicular to the axis cancel each-other while along the axis add 

up.   

    B =   





= sin

sin

4
sin

2

0

r

Id
dB

l
  

 Here,   is angle between the current element 
→

lId  and 
→

r , which is 
2


 everywhere and  

  sin  = 
r

R
= 

22 x+R

R
 

   B = 
2/322

0

)(4 x+



R

IR
 

R

dL

2

0

 

 or,  
2/322

0

)(4 x+


=

R

IR
B  (2R)  

 or,  
2/322

2
0

)(

2

4 x+






=

R

IR
B  … (4)   

 If the coil has N turns, then 
2/322

2
0

)(

2

4 x+






=

R

NIR
B  

 Direction of 
→

B : Direction of magnetic 

field at a point the axis of a circular coil is along the 

axis and its orientation can be obtained by using the 

right-hand thumb rule. If the fingers are curled along 

the current, the stretched thumb will point towards 

the magnetic field. 

 
I 

B I 

B 

 
 Magnetic field will be out of the page for anticlockwise current while into the page for clockwise current 

as shown in the figure given.  

 Now consider some special cases involving the application of equation (4) 
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Case I: Field at the centre of the coil 

  In this case distance of the point P from the 

centre  (x) = 0, the magnetic field  

  B = 
R

I

R

I

2

2

4

00 
=






    

 

• P 

B 

out 

ACW 

 P 

B 

IN 

CW 

I I 

 
Case II:  Field at a point far away from the centre  

 It means  x > > R,   
3

2
0 2

4 x

IR
B






=   

 

 

 

 Consider an arc of radius R carrying current I and subtending an 

angle  at the centre.       

 According to Biot-Savart Law, the magnetic field induction at 

the point P is given by  

    B  = 




4

0  


0

2R

Idl
  

 

I 

dl 

d 

→

B  

R 

 P 

 

 Here,    dl  = Rd 

     B  = 




4

0  




0

2R

IRd
  

 or,    B  = 
R

I





4

0  … (5)  

 If ‘l ’ is the length of the circular arc, we have  

    B  = 
2

0

4 R

Il




  … (6)  

 Consider some special cases involving the application of equation (5) 

Case I:  If the loop is the semi-circular,   

  In this case  = , so 

    B = 
R

I





4

0   

 and will be out of the page for anticlockwise 

current while into the page for clockwise current as shown 

in the figure.  

 

• 

B 

ACW 
 
B 

CW  

Case II: If the loop is a full circle with N turns, 

 In this case  = 2 so,   

      B = 
R

NI



 2

4

0   

 and will be out of the page for anticlockwise current while 

into the page for clockwise current as shown in the figure. 

 

• P 

B 

out 

ACW 

 P 

B 

IN 

CW 

I I 

 
 

 

 This law is useful in finding the magnetic field due to currents under certain conditions of symmetry. 

Consider a closed plane curve enclosing some current-carrying conductors. 

           FIELD AT THE CENTRE OF A CURRENT ARC 
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 The line integral 
→→

ldB .  taken along this closed curve is equal to 0 times the total current crossing the 

area bounded by the curve. 

 i.e.,  
→→

ldB .  = 0 I … (7)  

 where I = total current (algebraic sum) crossing the area. 

 As a simple application of this law, we can derive the magnetic 

induction due to a long straight wire carrying current I. 

Suppose the magnetic induction at point P, distant R from the wire is 

required.  

 Draw the circle through P with centre O and radius R as shown 

in figure.  

 

O R P 

B 

B I 

 

 The magnetic induction ||
→

B  at all points along this circle will be the same and will be tangential to the 

circle, which is also the direction of the length element 
→

ld . 

 The current crossing the circular area is I. 

 Thus, by Ampere’s law, B  2R = 0I  

   
R

I
B




=

2

0  … (8)  

 

 

 

7.1 MAGNETIC FIELD INSIDE A LONG SOLENOID  
 A solenoid is a wire wound closely in the form of a helix, such that the adjacent turns are electrically 

insulated. 

 The magnetic field inside a very tightly wound 

long solenoid is uniform everywhere along the axis of the 

solenoid and is zero outside it. 

 To calculate the magnetic field at a point P inside 

the solenoid, let us draw a rectangle PQRS as shown in 

figure. The line PQ is parallel to the solenoid axis and 

hence parallel to the magnetic field 
→
B  inside the 

solenoid. 

   ll BdB

Q

P

=
→


→

  

 

I I 

 
 l 

P Q 

R S 

B 

 

 On the remaining three sides, 
→


→

ldB  is zero everywhere as 
→
B  is either zero (outside the solenoid) or 

perpendicular to 
→
ld  (inside the solenoid). 

 If n is the number of turns per unit length along the length of solenoid, total nl turns cross the rectangle 

PQRS. Each turn carries a current I. 

   Net current crossing PQRS = nlI 

  Using Ampere’s law, 

    Bl = 0 nIl 

    B = 0nI … (9) 

7.2 MAGNETIC FIELD AT A POINT ON THE AXIS OF A SHORT SOLENOID  
 Consider a solenoid of length l and radius r containing N closely spaced turns and carrying a steady current 

           THE MAGNETIC FIELD OF A SOLENOID 
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I. We have to find out an expression for the magnetic field at an axial point P lying in the space enclosed by the 

solenoid as shown in the figure below.   
 

                                           

dx 
x 

B 

  

 

A 

R 

P 
→

Bd  
I I 

 
The field at a point on the axis of a solenoid can be obtained by the superposition of fields due to a large 

number of identical coils all having their centre on the axis of the solenoid.  

 Let us consider a coil of width dx at a distance x from the point P on the axis of the solenoid as shown in 

the above diagram.  

 The field at P due to this coil is given by  

  
2/322

2
0

)(

2

4 x+






=

R

dNIR
dB      

 If n be the number of turns per unit length, dN = ndx.  

 From the above figure,  

  x  = R tan    

 or,  dx  = R sec2 d  

  dB  = 
2/3222

2
0

)tan(

)(2

4 +







RR

IRndx
 = 




dnI cos)2(

4

0  

      B  = 




4

0  (2 nI) 


−

dcos  

 or,    B  = ]sin[sin)2(
4

0 +



nI   … (10)  

 Now consider some cases involving the application of equation (10)  

 Case I:  If the solenoid is of infinite length and the point is well inside the solenoid,  

 In this case,   =  = 
2


 

     B  = nInI 0
0 ]11[)2(

4
=+




 

 Case II: If the solenoid is of infinite length and the point is near one end  

 In this case,  = 0 and  = 
2


 

  )(
2

1
]01[)2(

4
0

0 nInIB =+



=   

 Case III:  If the solenoid is of finite length and the point is on the perpendicular bisector of its axis 

  In this case,  =   

     B  = 




4

0  (4nI) sin  , 

 where, sin  = 
22 4RL

L

+
  

 

 
            FORCE ON A CHARGED PARTICLE IN A MAGNETIC FIELD 
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 When a charge q moves with a velocity 
→

v  in a 

magnetic field 
→

B as shown in the figure, it experiences a 

magnetic force 
→

F  given by 

    )(
→→→

= BvqF                                      … (11)                          

 

+ q 
 

→

B  

→

v  

→

F  

 
 The magnitude of force is given by 

  |
→

F  | = qv B sin    

 where  is the angle between velocity 
→

v and magnetic field 
→

B . (smaller angle)  

 The force is directed at right angle to the plane 

containing the vectors 
→

v and 
→

B .  

 The right hand thumb rule: For determining the 

direction of the cross product 
→

v  × 
→

B , you point the fore 

fingers of your right hand along the direction of 
→

v , and palm 

in the direction of magnetic field 
→

B  then curl the fingers. The 

thumb then points in the direction of 
→

v  × 
→

B . 

 

+ q 
 

→

B  

→

v  

→

F  

 

 Since F = q
→

v  × 
→

B , 
→

F  is in the direction of 
→

v  × 
→

B  if q is positive and opposite the to direction of 
→

v  × 
→

B   if q is negative.  

Some important points  

 (1) The magnetic force will be maximum when sin = 1  

    = 90°, i.e., the charge is moving perpendicular to the field. 

  Fmax = qvB 

 In this situations 
→

F , 
→

v  and 
→

B  are mutually perpendicular to each other.  

 (2)  The magnetic force will be minimum when  

sin = 0, i.e.,  = 0° or 180°. It means the charge is moving parallel 

to the field.    

 Thus, Fmin = 0  

 

→

B  

v 
 = 0° 

v 
 = 180° q 

 
 (3)  In case of motion of charged particle in a magnetic field, as the force is always 

perpendicular to motion,  

  ==  
→→

90cos. FdssdFW = 0   

 So work done by the force due to magnetic field on a moving charged particle is always zero. 

According to work-energy theorem, 

 W =  KE, so the kinetic energy will not change and hence the speed v will remain constant.  

However, in this situation, the force changes the direction of the motion. therefore., the velocity 
→

v  of the 

charged particle changes.  
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8.1 DIFFERENCE BETWEEN MAGNETIC FORCE AND ELECTRIC FORCE  

 (1)  Magnetic force is always perpendicular to the field while electric force is collinear with the field.  

 (2)  Magnetic force is velocity dependent, i.e., acts only when the charged particle is in motion while 

electric force (qE) is independent of the state of rest or motion of the charged particle.  

 (3)  Magnetic force does no work when the charged particle is displaced while the electric force does 

work in displacing the charged particle.  

 (4)  Magnetic force is always non-central while the electric force may or may not be. 

 

 

 

9.1 WHEN THE CHARGED PARTICLE IS GIVEN VELOCITY PERPENDICULAR TO THE 

FIELD       

 Let a particle of charge q and mass m is moving with a velocity v 

and enters at right angles to a uniform magnetic field 
→

B  as shown in figure.  

 The force on the particle is qvB and this force will always act in a 

direction perpendicular to v. Hence, the particle will move on a circular 

path. If the radius of the path is r then    

 
×     ×    ×     ×    ×    ×   

×     ×    ×     ×    ×    ×   

×     ×    ×     ×    ×    ×   

×     ×     ×     ×         ×   

 

F 
v 

F 

F 

 
v 

 

                  
r

mv 2

 = Bqv   or,  
qB

mv
r =  … (12)  

 Thus, radius of the path is proportional to the momentum mv of the particle and inversely proportional to 

the magnitude of magnetic field.  

  Time period: is the time taken by the charge particle to complete one rotation of the circular path which is 

given by,   

  T = 
qB

m

v

r 
=

 22
 … (13)  

 The time period is independent of the speed v. 

 Frequency: The frequency is number of revolution of charged particle in one second, which is given by  

   = 
m

qB

T 
=

2

1
  … (14)  

9.2 WHEN THE CHARGED PARTICLE IS MOVING AT AN ANGLE TO THE FIELD  
 In this case the charged particle having charge q and mass m is moving with velocity v and it enters the magnetic 

field B at angle  as shown in figure. Velocity can be resolved in two components, one along magnetic field and the 

other perpendicular to it. Let these components are v|| and v⊥  

  v|| = v cos   

 and  v⊥ = v sin    

 The parallel component v|| of velocity remains unchanged as it is 

parallel to 
→
B . Due to the v⊥ the particle will move on a circular path. So 

the resultant path will be combination of straight-line motion and circular 

motion, which will be helical as shown in figure.  

 

+ 
 

q, m 

→

v  

→

B  

v cos 

v
 s

in

 

 
 

 

B  

 The radius of path is (r )  = 
qB

mv ⊥
 = 

qB

mv sin
 … (15)  

           MOTION OF A CHARGED PARTICLE IN A UNIFORM MAGNETIC FIELD 
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           Time period (T )   = 
⊥



v

r2
= 

qB

m

qBv

mv 
=



 2

sin

sin2
 … (16) 

   Frequency (f )    = 
m

Bq

2
 … (17) 

 Pitch:  Pitch of helix described by charged particle is defined as the displacement of the particle in the time 

in which it completes one revolution.  

              Pitch  = (v||) (time period) 

   = v cos  
Bq

m2
= 

qB

mv  cos2
 … (18) 

 

 

 

 When the moving charged particle is subjected simultaneously to both electric field 
→

E  and magnetic field 
→

B , the moving charged particle will experience electric force eF
→

 = 
→

Eq  and magnetic force mF
→

 = q ( )
→→

Bv , so 

the net force on it will be  

 )]([
→→→→

+= BvEqF  … (19) 

 Which is ‘Lorentz force equation’.  

 Now let us consider two special cases involving the application of above equation. 

 Case I:  When 
→→

E,v  and 
→

B  all the three are collinear:  

In this situation as the particle is moving parallel or anti-parallel to the field, the magnetic force on it will 

be zero and only electric force will act, so  

 
m

Eq

m

F
a

→→
→

==  

Hence the particle will pass through the field following a 

straight-line path (parallel to the field) with change in its speed. So in 

this situation speed, velocity, momentum and kinetic energy all will 

change without change in direction of motion as shown in the figure 

given below.  

 →

v  1

→

v  
E 

q 

B  

 
→→

Ev ,  and 
→

B  are collinear.  

Case II: 
→→

E,v  and 
→

B  are mutually perpendicular  

→→

Ev ,  and 
→

B  are mutually perpendicular. In case situation of 

→

E  and 
→

B  are such that  

 0=+=
→→→

me FFF  

 

q 
→

v  

E 

Fe 

→

v  

Fm 

→

B  
 

or,  
→

a  = 0=














 →

m

F
, then the particle will pass through the field with the same velocity. 

In this situation,  

  Fe = Fm   or,  qE = qvB   

or,   v = 
B

E
  

 This principle is used in velocity-selector to get a charged beam having a specific velocity. 

           MOTION OF A CHARGED PARTICL IN COMBINED ELECTRIC AND 
           MAGNETIC FIELD 
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 The cyclotron is a device used to accelerate positively charged particle to high energies. Such 

charged particles are required to carry out nuclear reactions.  

11.1 PRINCIPLE  

 It works on the fact that  

(i) When a charged particle moves at right angle to a uniform magnetic field it describes a 

circular path and  

(ii) If the charged particle simultaneously and repeatedly crosses an electric field while moving 

in the direction of the electric field, it gets accelerated to a sufficiently high energy. Such an electric 

field is called an oscillating electric field. 

11.2 CONSTRUCTION  

 The cyclotron consists of two D shaped hollow metallic semi-cylindrical chambers D1 and D2 

called the dees, enclosed in an evacuated steel box. The dees are kept horizontally with a small gap 

separating them. An oscillator which produces an alternating potential difference of the order of 103 volts 

and frequency of the order of mega cycles/sec is applied across the dees. A strong magnetic field produced 

by a strong electromagnet acts perpendicular to the plane of the dees. A sources S of ions or positively 

charged particles is kept in the gap between the dees.  

11.3 THEORY AND WORKING  

 Let m and q be the mass and charge of the ion or the particle to be accelerated. Let D2 be negative 

and D1 be positive when source (s) produces the particle. 

 The particle, therefore, gets attracted towards D2, the electric field becomes zero. It is because the 

electric field inside a charged conductor is always zero. Thus, inside D2,it moves with constant speed v at 

right angles to the magnetic field acting downward. As a result, the particle takes a semi-circular path 

inside D2. Let r be the radius of the semicircular path. Then  

  qvB
r

mv
=

2

  
qB

mv
r =  

  Time taken by particle to complete the semi-circular path  

  
v

r
t


= . But 

m

qBr
v =  

  
qB

m

qBr

rm
t


=


=  

 Above relation shows that t is independent of both the radius of the circular path and the speed of 

the charged particle. 

 As the particle reaches the gap just after completing the semi-circular path inside D2, the polarity 

of the dees is reversed i.e. D1 become negative and D2 positive. The particle accelerates due to the electric 

field and enters D1 with greater speed, say v1. It then moves along a semi-circular path of larger radius 

inside D1  due to the magnetic field (B) acting perpendicular to v1. As it comes out of D1 after completing 

the semi-circular path, the polarity of dees again gets reversed. The particle again accelerates and enters 

D2 with a greater speed and then describes a semi-circular path of larger radius. The whole process keeps 

repeating time and again. 

 As a result, the particle keeps on accelerating every time it crosses the gap between the dees and 

keeps describing semi-circular paths of increasing radii. The result is that a spiral path is followed by the 
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particle till it comes out of the dees through a window W with a very high speed i.e. high energy. The 

particles are deflected to come out through the windows by employing an electric field. 

 

 

11.4 CYCLOTRON FREQUENCY OR MAGNETIC RESONANCE FREQUENCY ()  

 The cyclotron works when the frequency of the applied alternating potential difference (0) is 

equal to the frequency of the revolving charged particle () 

  
m

qB

tT 
=


===

22

11
0  

  Cyclotron angular frequency 
m

qB
== 2    … (20) 

11.5 MAXIMUM VELOCITY AND MAXIMUM ENERGY OF THE ACCELERATED 

PARTICLE  

 Let vm be the maximum velocity of the particle when it comes out of the dees following semi-

circular path of maximum radius i.e. radius of dees, then  

  
m

qBR
vm =  

  Maximum kinetic energy acquired by the particle  

  

2

2
max

2

1

2

1








==

m

qBR
mmvE m  

  
m

RqB
E

222

max
2

1
=       … (21) 

11.6 LIMITATIONS OF CYCLOTRON 

 As the positive ion accelerates in the cyclotron, it moves with larger and speed. As this speed 

becomes comparable with the speed of light, the mass of the ion increases in accordance with the relation. 

  
22

0

/1 cv

m
m

−
=  

where,  m0 → the rest mass of the ion  

  v → velocity of the ion  

  m → mass of the ion when it moves with velocity v 

  c → velocity of light  

 Thus, the time taken by the ion to complete a semi-circular path 






 
=

qB

m
c also increases. 

It means that the polarity of dees changes before the ion completes the semi-circular path. The ion, 

therefore, gets out of phase with the oscillating electric field. 
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 Let L be the length of a straight conductor carrying a current I 

and placed perpendicular to a uniform magnetic field of induction B. 

 A current in a conductor is due to the movement of electrons and 

the direction of the conventional current is opposite to that of the direction 

of motion of electrons. If n be the number of moving charges per unit 

volume, each charge is of q, and travelling with drift velocity vd, the charge 

passing through any cross-section per second is nqvdA 

 

I 

L 

B 
→ 

 
  I = nqvdA 

 where A is the cross-sectional area. 

 The number of charges in length L of a conductor 

  N = nLA 

 The force on each charge  

  F = Bqvd 

 The force on all charges i.e., the force on the conductor  

  F = Bqvd  nLA 

  or  F = BIL 

 In vector form )(
→


→
=

→
BLIF  … (22) 

 where L is a vector in the direction of the current I; the magnitude of 
→

L  equals the length L of the segment. 

Note that this expression applies only to a straight segment of wire in a uniform magnetic field.     

 Now consider an arbitrarily shaped wire segment of uniform 

cross-section in a magnetic field 
→

B , as shown in figure. Then the 

magnetic force on a very small segment dL in the presence of magnetic 

field 
→

B  is given by  

 
→→→

= BLdIFd                              

 

→

LId  →

B   

 

 The magnitude of force is dF = BIdL sin, where  is the angle between the vectors 
→

LdI  and 
→

B . 

 Direction of force: The direction of force is always perpendicular to the plane containing 
→

LdI  and 
→

B  and 

is same as that of cross-product of two vectors ( )
→→

 ba  with 
→

a  = 
→

LId  and 
→

b = 
→

B .  

 

 

→

B  

→

LId  

→

Fd  

B 

→

Fd  

→

LId  

 

 The direction of force when current element 
→

LId  and 
→

B  are perpendicular to each-other can also be 

determined by applying either of the following rules.   

 (a) Fleming’s Left-hand Rule: Strech the fore-finger, central finger and thumb of the left hand mutually 

perpendicular. Then if the fore-finger points in the direction of the field (
→

B ) and the central in the direction of 

current I, the thumb will point in the direction of force (or motion).  

 (b) Right-hand Palm rule: Stretch the fingers and thumb of the right hand at right angles to each-other. If 
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the fingers point in the direction of current I, and the palm in the direction of the field 
→

B  then thumb will point in 

the direction of force. 

 

 

12.1 FORCE ON A CURVED CURRENT CARRYING WIRE  

 In this case a current-carrying conductor is placed in a uniform magnetic field 
→

B . the force is given by  

 
→→→→→

== BLdIBLIdF  

and for a conductor 
→

Ld  represents the vector sum 

of all the lengths elements from initial to final point, 

which in accordance with the law of vector addition 

is equal to the length vector 
→

L  joining initial to the 

final point. So a current-carrying conductor of any 

arbitrary shape in a uniform field experiences a 

force  

 
→→→

= BLdIF ][  = I 
→→

 BL   

 B 


→

L  

×                     ×                        ×                      × 

×                     ×                        ×                      × 

×                     ×                        ×                      × 

×                     ×                        ×                      × 

×                     ×                        ×                      × 

×                     ×                        ×                      × 

 

A 
 

  

12.2 FORCE ON A CLOSED LOOP OF AN ARBITRARILY SHAPED CONDUCTOR  
 Consider a current-carrying conductor in the form of a loop of any arbitrary shape is placed in a uniform 

field 
→

B . In this case the vector sum of the current element must be taken over the closed loop.  

 for a closed loop, the vector sum of 
→

Ld  is always zero.  

    0=
→

F  

 i.e., the magnetic force on a current loop in a uniform 

magnetic field is always zero.  

 

 ×                 ×                       × 
 
×                 ×                       × 

 

×                 ×                       × 

 

×                 ×                       × 
 

12.3 FORCE BETWEEN TWO LONG STRAIGHT PARALLEL CURRENT CARRYING 

CONDUCTORS 

 Let us consider two very long parallel straight wires carrying currents I1 and I2. 

 Each wire is placed in the region of magnetic induction of other and hence will experience a force. The net 

force on a current-carrying conductor due to its own field is zero. So if there are two long parallel current-carrying 

wires 1 and 2 (as shown below), the wire-1 will be in the field of wire-2 and vice-versa.  

 

dF1 

B2 

I1 

1 (A) 

d 

 
dF2 

I2 

2 

dF1 

I1 

1 

d 

 
dF2 

I2 

2 

 
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 The force on dl2 length of wire-2 due to field of wire-1, dF2 = I2 dL2 B1    

  = 2
210 2

4
dL

d

II




 [  B1 = 





4

0  
d

I12
]  

 or,     
d

II

dL

dF 210

2

2 2

4


=  … (23) 

 It will be true for wire-1 in the field of wire-2. The direction of force in accordance with the right-hand 

screw rule will be as shown above.  

 So the force per unit length in case of two parallel current-carrying wires separated by a distance ‘d’ is   

     
d

II

dL

dF 210 2

4


=   

 If I1 and I2 are along the same direction, the forces between the wires is attractive in nature and if I1 and I2 

are oppositely directed the force is repulsive. The direction of forces is given by Fleming’s left hand rule. 

Definition of ‘ampere’  

 We have   
d

II

dL

dF 210 2

4


=   

    If    I1 = I2 = 1A ; d = 1m; dL = 1m; then  

  dF = 2 × 10–7 N     

 Hence, ‘ampere’ is defined as the current which when passing though each of two parallel infinitely long 

straight conductors placed in free space at a distance of 1 m from each-other produces between them force of 2 × 

10-7 N for one metre of their length.  

 

 

 

13.1  MAGNETIC MOMENT  
 According to magnetic effects of current, in case of current-carrying coil for axial point,  

  
2/322

2
0

)(

2

4 x+






=

→

R

NIR
B   

 when  x > > R,     
→

B = 
3x

2
0 2

4

NIR




  

 If we compare this result with the field due to a small bar magnet for a distant axial point, i.e.,   

 
3

0 2

4 x

→
→




=

M
B ,  

 where M is magnetic moment of the bar magnet   

 we find that a current-carrying coil for a distant point behaves as a magnetic dipole of moment  

  =
→

M  NI R2 = NIA  … (24)  

 where A is area of the loop. So the magnetic moment of a current carrying coil is defined as the product of 

current in the coil with the area of coil in the vector form.  

 Magnetic moment of a current loop is a vector quantity and direction 

is perpendicular to the plane of the loop. Its dimensions are [L2A] and units 

are A-m2. 

 →

M  

 
 Magnetic moment in case of a charged particle having charge q and moving in a circle of radius R with 

speed v is given by qvR
2

1
 

 As we know,  I = qf  = 
R

v
q

2
 and |A| = R2  
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   M  = qvRSI
2

1
|| =

→

  

 

13.2  TORQUE ON A CURRENT LOOP 
 Consider a rectangular coil CDEF of length L and width b 

is placed vertically, while a uniform magnetic induction B passes 

normally through it as shown. The coil is capable of rotation about 

an axis O1O2.  

 If the loop is oriented in the magnetic field such that the 

normal to the plane of the coil makes an angle  with the direction 

of 
→
B , then the torque experienced by the loop 

   = 
2

b
(ILB ) sin  + 

2

b
(ILB )sin  

   i.e.,   = ILbB sin = IAB sin  

 

O1 O2 

E 

D C 

F 

I I 

F2 

• 
• 

• 

• 
• 

• • 

• • 
• • 

• • 

• • • • 

 

L 

b 

 
 where A = Lb is the area of the loop. 

 The maximum torque experienced is  = IAB, when  = 90 

 and for a coil of N turns 

   = NIAB 

 Here NIA = M = Magnetic moment of the loop. 

 In vector notation 
→


→

=
→
 BM . … (25) 

 This result holds good for plane loops of all shapes rectangular, circular or otherwise. 

13.3 WORK DONE IN ROTATING A CURRENT LOOP    

 When a current loop is rotated in a uniform magnetic field through an angle  about an axis then work done 

will be  

  
w

dW

0

 =  d  = 




0

sin dMB  

  W = –    0cosMB   = MB (1– cos)   … (26) 

 

 

 It is a sensitive instrument used for detecting and measuring small electric currents.  

Principle “ It works on the fact that when a current carrying coil is kept in a magnetic field, it 

experiences a torque”  

14.1 CONSTRUCTION  

 It consists of a coil MNOP having a larger number of turns of insulated copper wires and wound 

over a frame made of non-magnetic material such as copper. The coil may be rectangular or circular in 

shape. 

 The coil is suspended vertically from a movable screw (called torsion head) M by means of a 

phosphor bronze wire in uniform magnetic field which is produced by strong cylindrical pole pieces N 

and S shown in the figure. 

           MOVING COIL GALVANOMETER 
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S1 S2 

T2 

N O 

S N 

M P 

I T1 

H 

Phosphor bronze strip 

Brass care  

Coil  

Soft iron core 

Hair spring  

M 

 
 A soft iron core is held within the coil in such a manner that the coil rotates without touching the 

poles and the core. The core is spherical in shape for a circular coil and cylindrical for a rectangular coil. 

The lower end of the coil is connected to a hair spring ( a very light but highly elastic spring made of 

quartz or phosphor bronze). The other end of the spring is connected to a binding terminal T2. The torsion 

head is also connected to binding terminal T1. A small light mirror M is attached to the suspension wire 

to measure the deflection of the coil by a lamp and scale arrangement. 
 

N S 

 
 The entire apparatus is enclosed in a brass case (with glass window at the front) to avoid 

disturbances due to air etc. 

 

14.2 THEORY AND WORKING  

 Let a current I be passed through the coil by connecting a cell between T1 and T2. A torque acts on 

the coil and the coil turns by a certain angle. Therefore, suspension wire gets twisted through the same 

angle. As a result, a restoring torque comes into play in the suspension wire. The restoring torque tends 

to oppose the deflecting torque. 

 As the coil turns more, the restoring torque also increases till stage comes in which it becomes 

equal to the deflecting torque. 

 Let  be the angle by which the suspension wire gets twisted. 

 This is called the equilibrium position of the coil  

  In equilibrium position  

  Deflecting torque = Restoring torque  
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 or      = CNIAB cos  

 Here  is the angle which the plane of the coil makes with the direction of the magnetic field. 

 The soft iron core placed symmetrically between the cylindrical pole pieces produces a radial 

magnetic field. In such a field, the lines of force pass through the axis of the cylindrical gap between N 

and S. Hence, the plane of the coil in all position will remain parallel to the lines of force. 

   = 00 

C is the  torsion constant of the suspension wire and  is the angle of twist. 

  = CNIAB  

  I  

Thus deflection of the coil is directly proportional to the current flowing through the coil. 

14.3 CURRENT SENSITIVITY AND VOLTAGE SENSITIVITY OF A GALVANOMETER   

 Current sensitivity of a galvanometer is defined as the deflection produced in a galvanometer when 

unit current is passed through it. 

From  = CNIAB  

  current sensitivity 
C

NBA

I
=


=  

It is measured in rad A–1. 

 Voltage sensitivity is defined as the deflection produced in the galvanometer when a unit potential 

difference is applied across the two terminals of the galvanometer. 

  voltage sensitivity   
CG

NBA

IGV
=


=


=  

    
ergalvanometofresistance

ysensitivitcurrent
=  

 The unit of voltage sensitivity is rad/volt. 

 

 

 Consider a plane loop of wire carrying current. The current carrying loop thus behaves as a system of two 

equal and opposite magnetic poles and hence is a magnetic dipole. 

 

Upper face (N) 

Lower face(S) 

n̂  

M


 

I 

 
 The magnetic dipole moment of the current loop (M) is directly proportional to (i) strength of current (I) 

through the loop and (ii) area (A) enclosed by the loop. 

 i..e  IM   and M  A  

  KIAM =  

 where K is a constant of proportionality . 

 If we define unit magnetic dipole moment as that of a small one turn loop of unit area carrying unit current. 

 111 = K  or K = 1  

 IAM =  
 For N such turns, NLAM =  

 The SI unit of M is ampere metre2. It is the magnetic moment of one turn loop of area one square meter 

carrying a current of one ampere. 

           CURRENT LOOP AS A MAGNETIC DIPOLE 
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 In vector form, we can rewrite equation as  

 nNAM ˆ=


 

 where n̂  is unit vector perpendicular to the plane of the loop in a direction given by right handed screw 

rule.  

 

 

 

 In every atom, electrons revolve around the nucleus. A revolving electron is like a loop of current, 

which has a definite magnetic dipole moment. 

 If e is the change on an electron revolving in an orbit of radius r with a uniform angular velocity , then 

equivalent current 

 
T

e
i ==

time

charge
 where, 

 T = the period of revolution of electron = 2/ 

  



=


=

2/2

ee
i  … (i) 

 Area of the orbit A = r2 

 Magnetic moment of the atom is given by 

  2

2
r

e
iAM 




==    

 or  
2

2

1
reM =   … (ii) 

 Also 


=
2

nh
mvr , where n = 1, 2, 3 …… denotes the number of the orbit. Using v = r, we get 

 ( )


=
2

nh
rrm   or 

m

nh
r


=

2

2
 

 Put in  (ii) 

 ( )Bn
m

eh
n

m

nh
eM =


=


=

422

1
 … (iii) 

 where   mehB = 4/  

 We may define Bohr magneton as the magnetic dipole moment associated with an atom due to orbital 

motion of an electron in the first orbit of hydrogen atom. 

 

 
 

 The magnetic field of a bar magnet when mapped using a small compass needle, a pattern of field lines is 

formed around the magnet  

 It should be clearly understood that the field lines exist in all the space around the magnet. Comparison of 

the two field patterns shows that current carrying solenoid from outside resembles a bar magnet. Inside the solenoid, 

there is a strong magnetic field which can magnetise a specimen. Solenoid is hollow from inside whereas the bar 

magnet is solid.  

 

 

 

18.1 AT A POINT LYING ON ITS AXIAL LINE  

 Consider a bar magnet of pole strength m and magnetic length (2l) (distance between poles). Let 

P be a point on its axial line at a distance x from its centre.  

           MAGNETIC DIPOLE MOMENT OF AN ATOM DUE TO REVOLVING ELECTRON 
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S N 
B2 B1 

2l 

x 

(x – l) 

(x + l) 

P 

 

 Magnetic field at P due to N pole of the magnet is  

  
( )2

0
1

4 lx

m
B

−


=  (pointing towards right) 

Similarly, magnetic field at P due to the S pole  

 
( )2

0
2

4 lx

m
B

+


=  (pointing towards left) 

 Net magnetic field at P due to the magnet  

  
( ) ( ) 














+
−

−


=−=

22

0
21
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4 lxlx

m
BBB  

  
( )222

0 4

4 lx

lxm

−






=  

    
( )222

0 2

4 lx

Mx
B

−


=       … (27) 

As a far off point, i.e. x >>1 

 
3

0 2

4 x

M
B




=         

18.2 AT A POINT LYING ON ITS EQUATORIAL 

LINE  

 Let P be a point at a distance x from the centre of the 

magnet. 

 Magnetic field at P due to the north (N) pole of the 

magnet is  

  
2

0
1

4 r

m
B




= ( pointing along NP) 

 and the field due to the south (S) pole is  

  
2

0
2

4 r

m
B




=  (pointing along PS) 

 121 |||| BBB ==


 

 Net field at P due to the bar magnet is  

 

S N 

2l 

 

X 
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
=




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 or  
( ) 2/322

0

4 lx

M
B

+


=  (As 22 lxr += )   … (28) 

 At a far-off point lx   
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3

0

4 r

M
B




=  

 

 

 

 Consider a bar magnet of pole strength m and length 2l kept in a uniform magnetic field B


 pointing 

horizontally from left to right, as shown in figure. 

 Let  be the angle between the axis of the magnetic and the magnetic field (the angle between M


 

of the magnetic and B


) 

 

 

 Force acting on each pole of the magnetic is  

 mBF =  

 B2 

F=mB 
S 

M 
B 

 

N 

N 

F=mB 

2l 

2
ls

in

 

 
 Since these equal forces act on the magnet in the opposite direction, their resultant force is zero. 

But these forces constitute a couple which tends to rotate the magnetic in the clock wise direction and 

brings it along the direction of B


.  

 Torque due to the couple is  

        = force  perpendicular between the forces  

  = mB  2l sin  

  = (m 2l) B sin   

or         = MB sin  

       BM


=  

 The direction of the torque 


 is given by the right hand screw rule for the vector product.  

 If  = 900,  B = 1 T, then  = M 

 Therefore, magnetic dipole moment of a magnet is numerically equal to the torque acting on the 

magnet when held perpendicular to a uniform magnetic field of one Tesla. 
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