

mart No

 1

• *p-BLOCK ELEMENTS*

INNERT PAIR EFFECT

In the s−block, group I elements are univalent and group II elements are divalent. In group III we would expect the elements to be trivalent. In most of their compounds this is the case, but some of the elements show lower valency states as well. There is an increasing tendency to form univalent compounds on descending the group. Compounds with Ga(I), In(I) and Tl(I) are known. With Ga and In the (I) oxidation state is less stable than the (III) state. However, the stability of the lower oxidation state increases on descending the group. Tl(I) thallous compounds are more stable than Tl(III) thallic compounds.

How and why does monovalency occur in group III? The atoms in this group have an outer electronic configuration of s^2p^1 . Monovalency is explained by the s–electrons in the outer shell remaining paired and not participating in bonding. This is called the 'inert pair effect'. If the energy required to unpair them exceeds the energy evolved when they form bonds, then the s−electrons will remain paired. The strength of the bonds in MX₃ compounds decreases down the group.

The mean bond energy for chlorides are GaCl₃ = 242, InCl₃ = 206 and TlCl₃ = 153 kJ mol⁻¹. Thus the s–electrons are most likely to be inert in thallium.

The inert pair effect is not the explanation of why monovalency occurs in group III. It merely describes what happens, i.e. two electrons do not participate in bonding. The reason that they do not *take part in bonding is energy.* The univalent ions are much larger than the trivalent ions and (I) compounds are ionic and are similar in many ways to group I elements.

The inert pair effect is not restricted to group III, but also occurs among the heavier elements in other groups in the p–block. Examples from group IV are Sn^{2+} and Pb^{2+} and examples from group V are Sb^{3+} and Bi^{3+} . The lower oxidation state becomes more stable on descending the group. Thus, Sn^{2+} is a reducing agent but Pb^{2+} is stable and Sb^{3+} is a reducing agent but Bi^{3+} is stable. When the s–electrons remain paired, the oxidation state is always two lower than the usual oxidation state for the group.

Thus, in the s−**block, groups I and II show only the group valency. Groups in the p**−**block show**

variable valency, differing in steps of two. Variable valency also occurs with elements in the d−**block. This**

arises from using different number of d−**electrons for bonding, so in this case the valency can change in steps**

of one (e.g. Cu⁺ **and Cu²⁺,** Fe^{2+} **and Fe**³⁺).

THE GROUP – 13 ELEMENTS (BORON GROUP) 2

2.1 ISOLATION OF BORON

(i) Reduction of boric oxide with highly electropositive metals like Na, K and Mg in the absence of air. $B_2O_3(s) + 6K(s) \xrightarrow{\Delta} 2B(s) + 3K_2O(s)$

 $B_2O_3(s) + 3Mg(s) \xrightarrow{\Delta} 2B(s) + 3MgO(s)$

The product thus obtained is boiled with HCl and filtered when K_2O and MgO dissolves, leaving behind elemental B. The powdered B thus obtained is thoroughly washed with water to free it from HCl and is finally dried.

(ii) Modern Method

B is obtained these days by the electrolysis of a fused mixture containing boric anhydride, MgO and MgF₂ at 1100 $^{\circ}$ C. The electrolysis is done in a carbon crucible, which acts as anode and Fe rod is used as cathode. The Mg discharged at cathode reduces B_2O_3 to B.

 $2MgO \longrightarrow 2Mg + O_2$

 $B_2O_3 + 3Mg \longrightarrow 2B + 3MgO$

Ī

B thus obtained is heated electrically in vacuum at 1100° C, when the impurities are volatilised off and pure boron is obtained.

imart Notes

(iii) By thermal decomposition of BI₃ over red hot tungsten filament (Van Arkel method)

 $2BI_3 \xrightarrow[1173K]{} 2B(s) + 3I_2(g)$

2.2 GENERAL PROPERTIES

2.2.1 Melting Points, Boiling Points and structures

The melting points of group III elements donot show a regular trend as did the metals of group I and II. The Group III values are not strictly comparable because B and Ga have unusual crystal structures. Boron has an unusual crystal structure which results in the melting point being very high. Other elements form metallic bonding, but small size and high ionisation energy make this impossible for boron. Boron exists in four different allotropic forms, all of which contains icosahedral units with boron atoms at all 12 corners. (Icosahedral contains 12 corners and 20 faces). Only 37% of the space is occupied by the atoms, compared with 74% for a close−packed arrangement. This shows that icosahedra fill up space ineffectively.

The elements Al, In and Tl all have close-packed metal structures Ga has an unusual structure. Each metal atom has one close neighbour at a distance of 2.43 Å and six more distant neighbours at distance between 2.7 Å and 2.79 Å. This remarkable structure tends towards discrete diatomic molecules rather than a metallic structure. This accounts for the incredibly low melting point of gallium at 30ºC

As is obvious from the above table, the melting point decreases in the group but irregularities occur. B has very high melting point because of its unique covalent structure. Ga has extremely low melting point again because of its unique structure.

The boiling point for B is unusually high, but the values for Ga. In and Tl decrease on descending the group as expected. Note that the boiling point for Ga is in line with the others, whereas its melting point is not. The very low melting point is due to the unusual crystal structure, but the structure no longer exits in the liquid.

2.2.2 Size of atoms and ions

The metallic radii of the atoms do not increase regularly on descending the group. However, the values are not strictly comparable because of their unique structures.

mart Not

The ionic radii for M^{+3} increase down the group, though not in the regular way as observed in Group I and II. There are two reasons for this.

- (i) There is no evidence for the existence of B^{+3} under normal condition and the value of ionic radius is an estimate.
- (ii) The electronic structures of the elements are different. Ga and In have a d^{10} inner shell which is poorly screening and so have higher ionisation energies than would otherwise be expected. This contraction in size is sometimes called the d-block contraction.

In a similar way T*l* follows immediately after 14 f−block elements. The size and ionisation energy of T*l* are affected even more by the presence of 14 f electrons, which shield the nuclear charge even less effectively. The contraction in size from these f –block elements is called the lanthanide contraction.

2.2.3 Electropositive Character

The electropositive or metallic nature of the elements increase from B to Al, but then decreases from Al to T*l* as is shown by the standard electrode potentials for the reaction:

 $M^{+3} + 3e^- \longrightarrow M$

* For $H_3BO_3 + 3H^+ + 3e^ \longrightarrow$ B + 3H₂O

^f Value in acidic solution.

Ga, In and Tl have lesser tendency to lose electrons (and are thus electropositive), because of the poor shielding by d−electrons.

The E° values show that the stability of +3 oxidation state decreases down the group whereas that of +1 increases down the group.

2.2.4 Ionisation Energy

The ionisation energies increase as expected (first ionisation energy < second ionisation energy < third ionisation energy). The sum of the first three ionisation energies for each of the elements is very high. Thus, boron has no tendency to form ions, and always forms covalent bonds. The other elements normally form covalent compounds except in solution where the high hydration energy compensates the high ionisation energy.

The ionisation energy values do not decrease smoothly down the group.

The decrease from B to Al is the usual trend on descending a group associated with increased size. The poor shielding by d−electrons and the resulting d-block contraction affect the values for the later elements.

mart N

2.3 SOME DISSIMILARITIES OF BORON WITH OTHER ELEMENTS OF THIS GROUP

- (i) Boron is a non−metal, while all other elements of this group are metals.
- (ii) Boron forms only covalent compounds, while other elements of this group form both covalent and ionic compounds.
- (iii) Boron shows a maximum covalency of four, while other elements of this group show a maximum valency of six, absorbs neutron and is steel grey in colour. Its density is 2.34 gm/cc.

2.4 CHEMICAL PROPERTIES OF BORON

Crystalline B is not active while amorphous B reacts. The reactions are as follows.

(a) Reaction with air $700°C$

$$
4B + 3O_2 \xrightarrow{700 \text{°C}} 2B_2O_3
$$

$$
2B + N_2 \xrightarrow{\text{(00°C)}} 2BN
$$

The above reaction accompanies red flame.

 $BN + 3H_2O \xrightarrow{\text{High temp. & press.}} H_3BO_3 + NH_3$

(b) Action of alkali and acid are given as follows, $2B + 2NaOH + 2H_2O \longrightarrow 2NaBO_2 + 3H_2$ $2B + 3H₂O$

$$
2B + 3H2O \xrightarrow{\text{High temp.}} B2O3 + 3H2
$$

$$
2B + 3H2SO4 \xrightarrow{\text{oxidation}} 2H3BO3 + 3SO2
$$

 $2B + 6HNO₃ \xrightarrow{\text{oxidation}} 2H₃BO₃ + 6NO₂$

(c) Boron reacts with Mg and consequent hydrolysis gives diborane.

$$
3Mg + 2B \longrightarrow Mg_3B_2
$$

$$
3G_2 + 2B \longrightarrow Ga_3B_2
$$

 $3Ca + 2B \longrightarrow Ca_3B_2$

 $Mg_3B_2 + 6HCl \longrightarrow 3MgCl_2 + B_2H_6$

- $B_2H_6 + 6H_2O \longrightarrow 2H_3BO_3 + 6H_2$
- (d) Boron reduces $SiO₂$, $CO₂$ $3SiO₂ + 4B \longrightarrow 2B₂O₃ + 3Si$ $3CO₂ + 4B \longrightarrow 2B₂O₃ + 3C$
-

2.5 COMPOUNDS OF BORON

```
2.5.1 BORON HALIDES
```
(a) BORON TRIFLUORIDE (BF3)

```
Preparation:
```

```
B_2O_3 + 3CaF_2 + 3H_2SO_4 (conc.) \longrightarrow 3CaSO_4 + 2BF_3 + 3H_2O (colourless liquid).
```
 $B_2O_3 + 6KBF_4 + 3H_2SO_4 \longrightarrow 3K_2SO_4 + 8BF_3 + 3H_2O$

Properties: BF₃ undergoes hydrolysis as

 $4BF_3 + 3H_2O \longrightarrow B(OH)_3 + 3HBF_4$

 $B(OH)₃ + 4HF \longrightarrow HBF₄ + 3H₂O$

Two stage hydrolysis of BF_3 is

 $H_2O + BF_3 \longrightarrow H^+(BF_3 \text{OH})^- \xrightarrow{H_2O} H[BF_2(OH)_2] + HF$

(b) **BORON TRICHLORIDE**
$$
(BCI3)
$$

Preparation:

 $B_2O_3 + 3C + 3Cl_2 \longrightarrow 2BCl_3 + 3CO$ (volatile liquid)

When B_2O_3 is heated with PCl₅ at 150°C, it forms BCl₃

 $B_2O_3 + 3PCl_5 \longrightarrow 2BCl_3 + 3 POCl_3$ **Properties** BCl³ hydrolyses as follows $BCl_3 + 3H_2O \longrightarrow B(OH)_3 + 3HCl$ H[BCl4] does not exist but H[BF4]exists $BCl_3 + 3NH_3 \xrightarrow{-50^{\circ}C}$ \rightarrow $B(NH_2)_3 + 3HCl$ $BCl_3 + C_2H_5OH \longrightarrow BCl_2 (OC_2H_5) + HCl$ $BCl_3 + NOCl \longrightarrow [NO]^+ [BCl_4]^ 4BCl_3 + 3LiAlH_4 \xrightarrow{Ether} 2B_2H_6 + 3LiCl + 3AlCl_3$

Let us now discuss the acidic character of boron trihalides.

The shape of the BF_3 molecule is a planar triangle with bond angles of 120° . This is predicted by VSEPR theory as the most stable shape for three outer electron pairs around B. The valence bond theory also predicts a planar triangle with hybridisation of one s and two p orbitals used for bonding. However, the B atom only has six electrons in its outer shell and this is termed electron deficient.

Electronic structure of boron atom −excited state

three singly occupied orbitals form bonds with unpaired electrons from three halogen atoms[−] shape: triangular planar (sp² hybridization)

The bond lengths in BF_3 are 1.30 Å each and are significantly shorter than the sum of the covalent radii $(B = 0.80 \text{ Å}, F = 0.72 \text{ Å})$. The bond energy is very high: 646 kJ mol⁻¹, which is higher than for any single bond. The shortness and strength of the bonds is interpreted in terms of a

 $p\pi$ – $p\pi$ interaction, that is the bonds possess some double bond character. The empty 2p_z atomic orbital on B which is not involved in hybridisation is perpendicular to the triangle containing the $sp²$ hybrid orbitals. This p_z orbital may accept an electron pair from a full p_z orbital on any one of

the three fluorine atoms. Thus, a dative π bond is formed and the B atom attains an octet of electrons. If one localized double bond existed, then there would be one short bond and two longer ones. However, all measurements show that the three bond lengths are identical. The old valence bond explanation of this was resonance between three structures with the double bond in different positions. The modern explanation is that the double bond is delocalised. The p_z atomic orbitals from B and the three F atoms form a four–centre π molecular orbital covering all four atoms which contains two bonding electrons.

The acidic strength of the trihalides is in order

 $BBr_3 > BCl_3 > BF_3$

The order is the reverse of what would be normally expected on the basis of electronegativity of halogen and also on the basis of steric grounds.

This is explained on the basis of B−X π -bonding. The tendency to form the p π -p π double bond is maximum in BF_3 and decreases very rapidly as we move to BCl_3 and BBr_3 .

2.5.2 ORTHOBORIC ACID (H3BO3)

Structure of orthoboric acid

Orthoboric acid contains triangular BO_3^{3-} units. In the solid, the B(OH)₃ units are hydrogen bonded together into two−dimensional sheets with almost hexagonal symmetry. The layers are quite a large distance apart and thus the crystal breaks quite easily into very fine particles.

Hydrogen bonded structure of orthoboric acid

Preparation

 $Na₂B₄O₇ + 2HCl + 5H₂O \longrightarrow 2NaCl + 4H₃BO₃$ $2CaO + 3B₂O₃ + 2SO₂ + 9 H₂O \longrightarrow 2CaSO₃ + 6H₃BO₃$ $2CaSO₃ + 2H₂O + 2SO₂ \longrightarrow 2Ca (HSO₃)₂$ **Properties** $H_3BO_3 + H_2O \longrightarrow [B(OH_4)]^- + H^+(aq)$

Acidic properties of H_3BO_3 or $B(OH)_3$

Since B(OH)₃ only partially reacts with water to form H_3O^+ and $[B(OH)_4]^-$, it behaves as a weak acid. Thus H_3BO_3 or $[B(OH)_3]$ cannot be titrated satisfactorily with NaOH, as a sharp end point is not obtained. If certain organic polyhydroxy compounds such as glycerol, mannitol or sugars are added to the titration mixture, then B(OH)₃ behaves as a strong monobasic acid. It can now be titrated with NaOH and the end point is detected using phenolphthalein as indicator (indicator changes at $pH 8.3 - 10.0$).

$$
B(OH)3 + NaOH \implies Na[B(OH)4] \equiv NaBO2 + 2H2O
$$

Sodium metaborate

The added compound must be cis−diol, to enhance the acidic properties in this way.

(This means that it has OH groups on adjacent carbon atoms in the cis configuration). The cis–diol forms very stable complexes with the $[B(OH)_4]$ ⁻ formed by the forward reaction above, thus effectively removing it from solution. The reaction is reversible. Thus removal of one of the products at the right hand side of the equation upsets the balance and the reaction proceeds completely to the right. Thus all the B(OH)3 reacts with NaOH, in effect it acts as a strong acid in the presence of the cis−diol.

 H_3BO_3 forms chelate complex with glycol and thereby shows strong acidity with K_a value. The acidity is due to the high stability of the conjugate bone chelate complex.

$$
\text{HB(OH)}_4 + 2 \left[\begin{matrix} \downarrow & \downarrow \\ \text{CH}-\text{OH} \\ \text{CH}-\text{OH} \end{matrix}\right]^{-1} + \text{H}^+ + 4\text{H}_2\text{O}
$$

Catechol, salicylic acid also form similar complexes but ethanol is failure

Again $B_2O_3 + H_2O \longrightarrow H_3BO_3$ (Silky, pearly white crystal) BF_3 is a strong Lewis acid and forms adduct with NH_3

Uses of Boric acid

- (i) Boric acid is used in the manufacture of enamels and pottery glazes.
- (ii) Boric acid is used in medicines as an eye wash.
- (iii) Boric acid is used for making borosilicate glass.

2.5.3 BORON SESQUIOXIDE (B2O3)

Preparation:

 H_3BO_3 -Boric acid −H₂O $\rm{HBO}_{2} \xrightarrow[(2) 400^{\circ} \rm{C}]{} B_2\rm{O}_{3}$ (3) reduced pressure [−]½ H2O

Properties: The crystalline variety melts at 450°C. It reacts with CuO, CoO, P₂O₅ etc.

 $B_2O_3 + CuO \longrightarrow Cu (BO_2)_2$ [Borax Bead]

 $B_2O_3 + CoO \longrightarrow Co(BO_2)_2$

$$
B_2O_3 + P_2O_5 \Longrightarrow 2BPO_4
$$

Structures of some orthoborates and metaborates are given as follows,

orthoborates (Planar triangular)

2.5.4 BORAX (Na2B4O7.10H2O) Structure of Borax

In borax, two boron atoms are in triangular geometry and two boron atoms are in tetrahedral geometry. The ion is $[B_4O_5(OH)_4]^2$ and the remaining eight water molecules are associated with the two sodium ions. Hence, the borax contains tetranuclear units $[B_4O_5(OH)_4]^2$ and therefore is formulated as $Na₂[B₄O₅(OH)₄].8H₂O.$

Borax occurs naturally as tincal (contains about 55% borax) in certain inland lakes of India, Tibet and California (U.S.A.).

Borax can also be prepared from certain other minerals such as boracite, colemanite and boranatrocalcite. The minerals are powdered and boiled with sodium carbonate solution.

 $Ca₂B₆O₁₁ + 2Na₂CO₃ \longrightarrow 2CaCO₃ + Na₂B₄O₇ + 2NaBO₂$

Borax is crystallised from the filtrate. Sodium metaborate, present in the mother liquor, is converted into borax by passing carbon dioxide through it

$$
4NaBO2 + CO2 \longrightarrow Na2B4O7 + Na2CO3
$$

sod. metaborate

Two important hydrates of borax are known. These are,

- (i) Pentahydrate, $Na₂B₄O₇$.5H₂O.
- (ii) Decahydrate or monoclinic borax, $Na₂B₄O₇$. 10H₂O.

The pentahydrate is obtained when the solution is crystallised at above 60° C, while the monoclinic variety is obtained when crystallisation is carried out below 60°C. Both the varieties on heating form anhydrous borax.

Properties of Borax

(i) Borax is a colourless, crystalline solid sparingly soluble in cold water but dissolves readily in hot water. It forms two important hydrates: octahedral borax $Na_2B_4O_7.5H_2O$ and monoclinic borax $Na_2B_4O_7.10H_2O$.

(ii) Basic nature

Borax is slightly hydrolysed in solution. As boric acid is a weak acid, the solution is alkaline in nature.

 $B_4O_7^{2-} + 7H_2O \implies 2OH^- + 4H_3BO_3$

(iii)Action of acids

Borax reacts with HCl or H₂SO₄ to form boric acid. On cooling, the white flakes of boric acid are obtained

 $Na₂B₄O₇ + 2HCl + 5H₂O \longrightarrow 2NaCl + 4H₃BO₃$

boric acid

(iv) Action of heat

When powdered borax is heated strongly in a bunsen–flame, it loses water of crystallization and forms colourless, transparent glass−like bead which is made up of sodium metaborate and boric anhydride.

Uses of Borax

Borax is used,

- (i) for manufacturing enamels, glazes and optical glass.
- (ii) as a flux for soldering and welding.
- (iii) as an analytical reagent, e.g. in borax bead test.

2.5.5 BORON NITRIDE (INORGANIC GRAPHITE)

 $Na_2B_4O_7 + 2NH_4Cl \xrightarrow{1200^\circ C} 2 NaCl + H_2O + 2B_2O_3 + 2NH_3$ $B_2O_3 + 2NH_3 \longrightarrow 2BN + 3H_2O$ Structure of boron nitride Structure of Graphite

They are soft and used as lubricating material.

2.5.6 BORANES Structures of the boranes

SMARTLEARN

The bonding and structure of the boranes are of great interest. They are different from all other hydrides. There are not enough valency electrons to form conventional two−electron bonds between all of the adjacent pairs of atoms and so these compounds are termed electron deficient.

In diborane there are 12 valency electrons, three from each B atom and six from the

H atoms. Electron diffraction results indicate the structure shown in given figure.

The two bridging H atoms are in a plane perpendicular to the rest of the molecule and prevent rotation between the two B atoms. Specific heat measurements confirm that rotation is hindered. Four of the H atoms are in a different environment from the other two. This is confirmed that diborane cannot be methylated beyond $Me₄B₂H₂$ without breaking the molecule into BMe₃.

The terminal B−H distances are the same as the bond lengths measured in non–electron–deficient compounds. These are assumed to be normal covalent bonds, with two electrons shared between two atoms. We can describe these bonds as two−centre−two−electron bonds (2c−2e), with two electrons shared between two atoms.

Notice that the broad state of Thus, the electron deficiency must be associated with the bridge groups. The nature of the bonds in the hydrogen bridges is now well established. Obviously, they are abnormal bonds as the two bridges involve only one electron from each boron atom and one from each hydrogen atom, making a total of four electrons. An sp³ hybrid orbital from each boron atom overlaps with the 1s orbital of the hydrogen. This gives a delocalised molecular orbital covering all three nuclei, containing one pair of electrons and making up one of the bridges. This is a three−centre−two−electron bond (3c−2e). A second three−centre bond is also formed.

It contains two 3−centre 2−electron banana bonds (B … H … B). Two electrons from two H atom and two from two Boron atoms consist of four electrons. An overlap of $sp³$ hybrid orbital of B and 1s hydrogen orbital gives the delocalised molecular orbitals of a B … H … B bridge.

None of the group III elements react directly with hydrogen, but several interesting hydrides are known. The boron hydrides are sometimes called boranes by analogy with the alkanes (hydrocarbons). Almost 20 boranes have been reported and 11 are well characterized. They fall into two series:

- 1. $B_nH_{(n+4)}$ (called nido–boranes).
- 2. A less stable series $B_nH_{(n+6)}$ (called arachno–boranes).

Ī

Boron hydrides differ from carbon hydrides (i.e. hydrocarbons) that they don't occur in nature because of their great affinity for H_2O and O_2 . The compound BH_3 which would be analogous to BF_3 doesnot exist because H–atom lacks the electrons that would be needed to participate in B–H π –bonding and compensate for the incomplete octet of B. BH³ can exist only in complex formation with donors such as

 $BH₃CO, BH₃N(CH₃)₃$. Molecules of $BH₃$ apparently dimerize spontaneously when they come in contact with each other to form diborane, B_2H_6 .

The fluorides of Al, Ga, In and Tl are ionic and have high melting points. The other halides are largely covalent when anhydrous. AlCl3, AlBr³ and GaCl³ exist as dimers, thus attaining an octet of electrons. The dimeric formula is retained when the halides dissolve in non-polar solvents such as benzene.

When the halides are dissolved in water, the high enthalpy of hydration is sufficient to break the covalent dimer into [M.6 H₂O]⁺³ and 3X⁻ ions. At low temperatures, AlCl₃ exists as a close packed lattice of Cl⁻ with Al^{43} occupying octahedral holes. On heating, Al_2Cl_6 species are formed and the volume of the solid greatly increases. This illustrates how close the bonding in this compound is to the ionic/covalent border. **2.6.3 ALUMS**

mart No

Alums are the compounds with general formula M_2SO_4 . $M'(SO_4)_3.24H_2O$

 $M =$ Monovalent basic radical like Na^+ , K^+ , Rb^+ , Cs^+ , TI^+ , NH_4^+

 M' = Trivalent basic radical like Al^{+3} , Cr^{+3} , Mn^{+3} , Fe^{+3} , Co^{+3}

Alums are obtained when hot solution of equimolar quantities of their constituent sulphates are mixed and subjected to crystallization. These are acidic and swell on heating.

2.7 OXIDES AND HYDROXIDES OF GROUP III

On moving down the group, there is a gradual change from acidic through amphoteric to basic character of oxides and hydroxides.

Al(OH)³ is amphoteric. It reacts principally as a base, i.e. it reacts with acids to form salts that contain the $[AI(H_2O)_6]^{+3}$ ion. However, $AI(OH)_3$ show some acidic properties when it dissolves in NaOH, forming sodium aluminate. (However, $\text{Al}(\text{OH})_3$ is reprecipitated by the addition of CO_2 , showing that the acidic properties are very weak).

$$
\text{Al(OH)}_3 \xrightarrow{\text{excess NaOH}} \text{NaAl(OH)}_4
$$
\n
$$
\text{NaAlO}_2.\text{2H}_2\text{O}
$$

Sodium meta−aluminate

The structure changes with both pH and concentration.

- (i) Between pH 8 and 12, the ions polymerise using OH bridges and each aluminium is octahedrally coordinated.
- (ii) In dilute solutions, above pH value of 13, a tetrahedral $[Al(OH)_4]$ ⁻ ion exists.
- (iii) In concentrated solutions above 1.5 M and $pH > 13$, the ion exists as a dimer

 $[(HO)_3 \text{ Al}-O - Al(OH)_3]^2]$

 $Ga₂O₃$ and $Ga(OH)₃$ are both amphoteric like the corresponding Al compounds. $Ga(OH)₃$ is white and gelatinous and dissolves in alkali, forming gallates. TI_2O_3 and In_2O_3 are completely basic, and form neither hydrates nor hydroxides.

TlOH is a strong base, and is soluble in water. Thus TlOH differ from the trivalent hydroxides and resembles the Group I hydroxides. Where an element can exist in more than one valency state, there is general tendency for the lowest valency state to be the most basic.

THE GROUP – 14 ELEMENTS (CARBON GROUP) 3

3.1 PHYSICAL PROPERTIES

1. Covalent radii

The covalent radii increase down the group. The difference in size between Si and Ge is less than might be otherwise expected because Ge has a full 3d shell, which shields the nuclear charge rather ineffectively. In a similar way the small difference in size between Sn and Pb is because of the filling of the 4f shell.

2. Ionisation energy

The ionisation energy decrease from C to Si, but then change in an irregular way because of the effects of filling of the d and f shells. The amount of energy required to form M^{+4} ions is extremely large and hence simple ionic compounds are rare.

3. Melting points

Melting involves breaking the strong covalent bonds in the lattice of C and thus has extremely high

mart No

melting point. The melting points decrease on descending the group because the M-M bonds become weaker as the atoms increase in size. Sn and Pb are metallic and have much lower melting points. They do not use all four outer electrons for metallic bonding.

4. Metallic and non-metallic character

The change from non-metal to metal with increasing atomic number is well illustrated in group IV, where C and Si are non-metals, Ge has some metallic properties, and Sn and Pb are metals. The increase in metallic character shows itself in the structures and appearance of the elements, in physical properties such as malleability and electrical conductivity, and in chemical properties such as the increased tendency to form M^{+2} ions and the acidic or basic properties of the oxides and hydroxides.

3.2 ALLOTROPES OF CARBON

The phenomenon of the existence of an element in different forms, which have different physical properties but similar chemical properties, is known as allotropy. Such different forms of an element are called its allotropes or allotropic forms. Carbon shows allotropy. The various allotropic forms of carbon can be broadly classified into two classes.

(a) Crystalline form

Diamond and graphite are the two crystalline forms of carbon. Graphite is thermodynamically more stable than diamond. Its free energy of formation is 1.9 kJ mol⁻¹ lower than that of the diamond under standard conditions. Thus thermodynamically, diamonds should get transformed into graphite on their own. But it does not happen at least on our lifetime scale. This is because, this conversion is not favoured by kinetic factors, for example the activation energy for this reaction is very high.

Structure of diamond

In diamond, the carbon atoms are arranged tetrahedrally $(sp³$ hybridisation of C): each C atom is linked to its neighbours by four single covalent bonds. This leads to a three−dimensional network of covalent bonds. It is because of this, that diamond is very hard and has high melting and boiling points. Since, all the valence electrons of carbon are used up in forming the covalent bonds, hence diamond does not conduct electricity.

Structure of graphite

In graphite, the carbon atoms are arranged in regular hexagons in flat parallel layers.

Each carbon in these layers is bonded to three other by sp² covalent bonds. This gives some double bond character to graphite. Each layer is bonded to the adjacent layers by weak Vander Waal's forces. As a result, each layer can slide over the other easily. It is because of this structure that graphite is soft and slippery and can act as a lubricant. The presence of double bond character (the presence of delocalised −electrons) makes graphite a good conductor of electricity.

(b) Amorphous form:

Coal, coke, charcoal (or wood charcoal), animal charcoal (or bone black), lamp black, carbon black, gas carbon and petroleum coke are the amorphous form of carbon.

3.3 COMPOUNDS OF CARBON

3.3.1 CARBON MONOXIDE

Structure of CO

Electronic structure of carbon monoxide may be represented as follows

C≦O

:C:::O: or

Preparation:

(i) By the reduction of carbon dioxide with carbon.

$$
CO_2 + C \underset{\longleftarrow}{\underbrace{\text{heat}}} 2CO
$$

(ii) By the reduction of carbon dioxide with zinc or iron.

$$
CO_2 + Zn \xrightarrow{\text{heat}} ZnO + CO
$$

(iii)By the reduction of oxides of heavy metal with carbon. For example,

Ī

$$
ZnO + C \xrightarrow{\text{heat}} Zn + CO
$$

By heating oxide acid with sulphuric acid

(iv) By heating oxalic acid with sulphuric acid.

COOH COOH

 $\mathsf{H_2SO_4}$ [−]H2O $CO + CO₂$

(v) By heating formic acid with sulphuric acid. In this reaction, sulphuric acid acts as a dehydrating agent.

$$
\text{HCOOH} \xrightarrow{-H_2SO_4,400K} \text{CO}
$$

Reactions

(i) With hydrogen

Carbon monoxide reacts with hydrogen when heated to 420−670 K under 300 atm pressure and in the presence of a catalyst $(ZnO + Cu)$ to form methyl alcohol.

 $CO + H₂$ methyl alcohol $\mathsf{CH_3OH}$ 420 - 670 K, 300 atm $ZnO + Cu$

(ii) With chlorine

Carbon monoxide reacts with chlorine to give phosgene.

 $CO + Cl₂ \xrightarrow{\text{sunlight}}$ COCl₂

phosgene (or carbonyl chloride)

3.3.2 CARBON DIOXIDE (CO2)

Preparation

(i) Carbon dioxide may be prepared by the complete combustion of carbon, hydrocarbons, carbon monoxide etc.

 $2CO + O_2(g) \longrightarrow 2CO_2(g) + Heat$ CH_4 + $2O_2(g) \longrightarrow CO_2(g)$ + $2H_2O$ $CaCO₃$ $\xrightarrow{heat} CaO + H₂O + CO₂(g)$

(ii) By the action of acids on carbonates

In laboratory, carbon dioxide gas is prepared by the action of dil. HCl on marble chips $(CaCO₃)$

$$
CaCO3(s) + 2HCl(dil.) \longrightarrow CaCl2(aq) + CO2(g) + H2O
$$

- (a) With Mg: CO_2 + 2Mg $\longrightarrow 2MgO$ (b) With Na: $CO₂$ + 4Na $\longrightarrow 2Na₂O$ + C
- **Chemical Properties:**

(i) Acidic nature

CO² dissolves in water to give carbonic acid. Therefore, carbon dioxide is called carbonic anhydride.

$$
CO2 + H2O \implies H2CO3
$$

carbon dioxide
$$
H2O \implies H2CO3
$$

Carbonic acid is a very weak dibasic acid. It ionises in aqueous solutions as,

$$
\begin{array}{ccc}\nH_2CO_3(aq) & \Longleftrightarrow & H^+ & + & \text{HCO}_3^-(aq) & K_1 = 4.2 \times 10^{-7} \\
HCO_3^-(aq) & \Longleftrightarrow & H^+ & + & CO_3^{2-}(aq) & K_2 = 4.8 \times 10^{-11}\n\end{array}
$$

Carbonic acid being a dibasic acid forms two sets of salts, the hydrogen carbonates, HCO_3^- and carbonates, CO_3^{2-} .

(ii) With lime water

When CO_2 is bubbled through limewater, it turns milky due to the formation of $CaCO_3$. When more CO_2 is bubbled, solution becomes clear due to the formation of $Ca(HCO₃)₂$. On boiling the clear solution, milkiness reappears due to the formation of $CaCO₃$ once again.

The reaction forms the basis of lime water test for the detection of CO_3^{2-} and HCO_3^- ions in any salt/salt mixture.

3.3.3 CARBONIC ACID

Carbonic acid (H_2CO_3) has never been isolated, but it gives rise to two series of salts, hydrogen carbonates and carbonates.

3.3.4 CARBONATES $\left(\mathbf{CO}_3^{2-}\right)$ AND BICARBONATES $\left(\mathbf{HCO}_3^-\right)$

Carbonic acid is dibasic acid and gives rise to two series of salts, carbonates (normal salts) and bicarbonates (acid salts) due to successive removal of the replaceable hydrogens from H_2CO_3 .

 H_2CO_3 + NaOH \longrightarrow NaHCO₃ + H₂O These can also be prepared using the following methods

With NaOH

 $2NaOH + CO₂ \longrightarrow Na₂CO₃$

 $Na_2CO_3 + H_2O + CO_2$ \longrightarrow 2NaHCO₃

Sodium carbonate Sodium bicarbonate

By precipitation:

Heavy metal carbonates are precipitated from their salt solutions with washing soda.

 $BaCl₂$ + $Na₂CO₃$ \longrightarrow $BaCO₃\downarrow$ + $2NaCl$

While carbonates of many metals are known, bicarbonates of only alkali metals exist in the solid state.

3.3.5 HALIDES OF CARBON

Carbon combines with all the halogens to form tetrahalides, viz, CF_4 , CCl_4 , CH_4 and Cl_4 , mixed tetrahalides like CFCl₃, CF_2Cl_2 and CCl_3Br and trihalides of the formula CHX₃, viz, CHCl₃ (chloroform) and CHI³ (iodoform).

General characteristics

- (i) The thermal stability of tetrahalides of carbon follows the order,
	- $CF_4 > CCl_4 > CBr_4 > Cl_4$
- (ii) The tetrahalides especially those containing both fluorine and chlorine are chemically inert, non−inflammable gases or liquids.
- (iii) Freon (CF_2Cl_2) is used as a refrigerant.

3.3.6 CARBIDES AND SULPHIDES

Carbides

Carbides are the binary compounds containing carbon and another less electronegative element or of similar electronegativity. Compounds of carbon and a less electronegative element are called carbides. This excludes compounds with N, P, O, S and the halogens from this section. **Preparation of carbides**

(a) Aluminium carbide is obtained by heating aluminium with carbon in an electric furnance.

4Al + 3C $\frac{\text{electric furnace}}{\text{electric furnace}}$ \rightarrow Al₄C₃

(b) Silicon carbide is obtained by heating (sand) with carbon in an electric furnance.

 $SiO₂ + 2C \xrightarrow{2300 \text{ K}}$ $SiC + 2CO(g)$

(c) Calcium carbide is obtained by heating lime (CaO) with coke in a electric furnance.

$$
+ \qquad 3C \qquad \xrightarrow{\text{electric furnace}} \qquad \text{CaC}_2 \qquad + \qquad \text{CO}
$$

Ī

Kinds of Carbides

 CaO

These are of three kinds

(1) Salt like carbides

Based on the product obtained on hydrolysis, they are further subdivided into three types. (a) Methanide (b) Allylide (c) Acetylide

Both Be₂C and Al_4C_3 are called methanides because they react with H₂O, yielding methane.

Carbides with a C₂ unit are well known. They are formed mainly by the elements in group I ($M_2^LC_2$); group II ($M^HC₂$); the coinage metals (Cu, Ag, Au); Zn and Cd and some of the lanthanides (LnC₂ and Ln₄(C₂)₃). These are all colourless ionic compounds and contain the carbide ion ($-C \equiv C$)²⁻. By far the most important compound is CaC2. This is made commercially by strongly heating lime and coke:

 $CaO + 3C \longrightarrow CaC_2 + CO$; $\Delta H = +466 \text{ kJ mol}^{-1}$ The reaction is endothermic and a temperature of 2200 °C is required. These carbides react exothermically with water, liberating ethyne (formerly called acetylene). So, they are called acetylides.

$$
CaC_2 + 2H_2O \longrightarrow Ca(OH)_2 + HC=CH
$$

The acetylides have a NaCl type of lattice, with Ca²⁺ replacing Na⁺ and C^{2–} replacing Cl⁻. In CaC₂, SrC₂

and BaC₂ the elongated shape of the $(C= C)^{2-}$ ion causes tetragonal distortion of the unit cell, that is it elongates the unit cell in one direction. One of the two carbides of magnesium Mg_2C_3 contains a C_3 unit and on hydrolysis with water it yields propyne CH_3 –C≡CH. So, Mg₂C₃ is called allylide.

(2) Covalent carbides

These are extremely hard and chemically inert. SiC and B₄C are the most important covalent carbides. Silicon carbide is hard, infusible and chemically inert. It is widely used as an abrasive called carborundum and about 300000 tonnes are produced annually by heating quartz or sand with an excess of coke in an electric furnace at 2000−2500°C.

 $SiO₂ + 2C \longrightarrow Si + 2CO$

 $Si + C \longrightarrow SiC$

SiC is very unreactive. It is unaffected by acids (except H₃PO₄), but it does react with NaOH and air and with $Cl₂$ at 100 $^{\circ}$ C.

 $SiC + 2NaOH + 2O₂ \longrightarrow Na₂SiO₃ + CO₂ + H₂O$

 $SiC + 2Cl_2 \longrightarrow SiCl_4$

SiC is often dark purple, black or dark green due to traces of Fe and other impurities,

but pure samples are pale yellow to colourless. SiC has a three dimensional structure of Si and C atoms, each atom tetrahedrally surrounded by four of the other kind.

(3) Metallic / interstitial carbides

These are formed by bigger transition elements eg. Ti and V. These are formed mostly by transition elements and some of the lanthanides and actinides. The Cr, Mn, Fe, Co and Ni groups form a large number of carbides with a wide range of stoichiometries. They are typically infusible or are very high melting and are very hard. For example, TaC has a melting point of 3900°C, and is very hard and WC is also very hard. Both are used to make cutting tools. Interstitial carbides retain many of the properties of metals. They conduct electricity by metallic conduction and have a lustre like a metal

Uses of Carbides

Aluminium carbide (Al_4C_3) is used for the manufacture of methane. Magnesium carbide (Mg_2C_3) is used for preparing alkyne.

 $\text{Al}_4\text{C}_3 + 12\text{H}_2\text{O} \longrightarrow 4\text{Al}(\text{OH})_3 + 3\text{CH}_4$ Mg_2C_3 + $4H_2O \longrightarrow 2Mg(OH)_2$ + $CH_3-C\equiv CH$

Sulphides

 $CS₂$ is prepared from natural gas by the following reaction.

$$
CH_4(g) + 4S \longrightarrow \frac{600^{\circ}C}{AI_2O_3/SiO_2} \quad CS_2 + 2H_2S
$$

3.4 PREPARATION OF SILICON AND ITS REACTIONS

Silicon is the second most abundant element occurring in the earth's crust (about 28% by weight).

Unlike carbon, it is never found in free state but always in combined state. It is an important

constituent of igneous rocks, which consists of silicates of magnesium, aluminium, potassium or iron.

Silicon is widely present as silica (SiO2) in various forms such as sand, quartz, flint etc.

Silicon is obtained by the reduction of silica. It exists in two allotropic forms: (a) amorphous and (b) crystalline. The amorphous variety is obtained by heating dry powered silica with magnesium.

$SiO₂ + 2Mg \longrightarrow Si + 2MgO$

The crystalline variety is obtained by heating a finely powered sand or quartz with carbon in an electric furnace, a small amount of iron is added to prevent the formation of carborundum (SiC).

 $SiO_2 + 2C \longrightarrow Si + 2CO$

Amorphous silicon is chemically more reactive than crystalline silicon. Amorphous silicon is brownish powder. It burns brilliantly in oxygen and ignites spontaneously in fluorine.

$$
Si + O_2 \longrightarrow SiO_2
$$

$$
Si + 2F_2 \longrightarrow SiF_4
$$

 $Si + 2KOH + H_2O \longrightarrow K_2SiO_3 + 2H_2$

 $Na_2CO_3 + Si \longrightarrow Na_2SiO_3 + C$

It combines with certain metals forming silicides.

 $2Mg + Si \longrightarrow Mg₂Si$

When amorphous silicon is strongly heated, it fuses and on cooling solidifies to the crystalline form. It is very hard crystalline silicon, does not burn in oxygen but it readily combines with fluorine. It dissolves in mixture of HNO₃ and HF. When fused with alkali, it gives a silicate.

 $Na_2CO_3 + Si \longrightarrow Na_2SiO_3 + C$

Silicon is used in the manufacture of certain alloys such as ferrosilicon, silicon bronze, manganese silicon bronze, etc. These alloys possess high strength and hardness and are resistant to the attack of acids.

3.5 COMPOUNDS OF SILICON

3.5.1 CARBORUNDUM (SILICON CARBIDE), SiC

It is obtained when a mixture of sand, carbon, common salt and saw dust is strongly heated in an electric furnace.

 $SiO_2 + 3C \longrightarrow SiC + 2CO$

Salt is added to act as flux and saw dust makes the mass porous. Two carbon rods connected by a thin carbon core act as electrodes in the furnace. Carborundum is

formed round the central core of carbon. It is crushed, washed with H_2SO_4 , NaOH, H_2O and then dried. **Properties**

- (i) Pure carborundum is colourless, but commercial samples posses yellow, green or blue colour.
- (ii) It is very hard mass. However, its hardness is less than diamond.
- (iii) It is chemically inert and resists the attack of almost all the reagents except fused caustic soda. The fused alkali dissolves it in presence of air.

 $4NaOH + SiC + 2O₂ \longrightarrow Na₂SiO₃ + Na₂CO₃ + 2H₂O$

Ī

Its structure is similar to diamond.

Uses

It is used as an abrasive instead of emery. It is used to make grinder, knife sharpeners, etc. Two oxides of silicon SiO and SiO₂ have been reported. SiO is thought to be formed by high temperature reduction of $SiO₂$ with Si, but its existence at room temperature is in doubt.

 $SiO₂ + Si \rightarrow 2SiO$

SiO₂ is commonly called silica, and it is widely found as sand and quartz. Group IV elements typically form four bonds. Carbon can form $p\pi$ - $p\pi$ double bonds and hence CO₂ is a discrete molecule and is a

gas. Silicon cannot form double bonds in this way using

 $p\pi-p\pi$ orbitals. Thus, SiO₂ forms an infinite three-dimensional structure and hence SiO₂ is a high melting solid.

3.5.2 HYDROLYSIS OF SiCl⁴

The hydrolysis of SiCl⁴ is rapid because Si can use a d-orbital to form a five-coordinate intermediate, and the reaction occurs by an S_N2 mechanism.

A lone pair of electrons from the oxygen is donated to an empty d orbital on Si, forming a five-coordinate intermediate, which has a trigonal bipyramidal structure.

If the hydrolysis is performed on an asymmetrically substituted and consequently optically active, silicon compound such as MeEtPhSi*Cl, then Walden inversion will occur, resulting in inversion of the structure from d to *l* or vice-versa. In a similar way, the reduction of $R_1R_2R_3Si^*Cl$ with LiAlH₄ to give $R_1R_2R_3Si^*H$ also involves inversion of structure.

3.5.3 SODIUM SILICATE, Na2SiO3 (WATER GLASS)

It is commercially called water glass. Chemically it is sodium metasilicate containing an excess of silica. Its composition may vary from $Na₂SiO₃$. SiO₂ to Na₂SiO₃.3SiO₂.

It is obtained by fusing soda ash (Na_2CO_3) with pure sand at a high temperature.

$$
Na_2CO_3 + SiO_2 \longrightarrow Na_2SiO_3 + CO_2 \uparrow
$$

The resulting mass is extracted with water and the solution is evaporated to get a syrupy mass known as water glass.

Properties

It is soluble in water. The solution is alkaline due to hydrolysis.

 $Na_2SiO_3 + 2H_2O \rightleftharpoons 2NaOH + H_2SiO_3$

If in a solution of sodium silicate of density 1.1, some coloured salts like cobalt nitrate, nickel chloride, ferrous sulphate, copper sulphate, etc., are placed and whole solution is left as such for a night, beautiful hollow tubes of metallic silicate gels possessing different colours shoot up from these crystals and look like plants. This is called silica garden or chemical garden.

Uses: It is used

(a) in fire proofing of wood and textiles.

(b) as a preservative for eggs.

- (c) as an adhesive cement for joining pieces of china clay.
- (d) in the soap industry as a filler for a cheaper variety of soap.

- (e) in paint industry and calico printing.
- (f) for making silica gel $SiO_2 \cdot xH_2O$. When a solution of Na_2SiO_3 is acidified with HCl, a gelatinous

precipitate of silicic acid (H_2SiO_3) is slowly formed.

 $Na₂SiO₃ + 2HCl \longrightarrow 2NaCl + H₂SiO₃$

If most of the water is carefully removed, the jelly like precipitate of H_2SiO_3 is converted into a solid product, which is called silica gel. It possesses excellent absorption property of gases and vapours.

mart No

3.5.4 SILICONES

These are organosilicon polymers containing Si—O—Si linkages. These are formed by the hydrolysis of alkyl or aryl substituted chlorosilanes and their subsequent polymerisation. The alkyl or aryl substituted chlorosilanes are prepared by the reaction of Grignard reagent and silicon tetrachloride.

 $RMgCl + SiCl_4 \longrightarrow R-SiCl_3 + MgCl_2$ Grignard reagent $2RMgCl + SiCl_4 \longrightarrow R_2SiCl_2 + 2MgCl_2$

 $3RMgCl + SiCl_4 \longrightarrow R_3SiCl + 3MgCl_2$

R stands for $-CH_3$, $-C_2H_5$ or $-C_6H_5$ groups.

Hydrolysis of substituted chlorosilanes yield corresponding silanols, which undergo polymerisation.

Cyclic silicone

R3SiCl on hydrolysis forms only a dimmer

 $R_3Si OH + HOSiR_3 \longrightarrow R_3Si-O-SiR_3 + H_2O$

Properties

- (i) The lower silicones are oily liquids but higher members containing long chains or ring structures are waxy and rubber like solids.
- (ii) Silicones are stable towards heat.
- (iii) Chemical reagents have no action on silicones.
- (iv) These are non−toxic.
- (v) Viscosity of silicone oils remains the same at different temperatures.
- (vi) Silicones are good electrical insulators.
- (vii) These are water repellents.

Uses

- (i) Silicone oils are used for high temperature oil baths, high vacuum pumps and low temperature lubrication.
- (ii) These are used in making water-proof cloth and paper by exposing cloth or paper to the silicone vapour.
- (iii) These are used as insulating materials for electric motors and other electrical appliances.
- (iv) These are mixed with paints and enamels to make them resistant to the effects of high temperature, sunlight, chemicals and damp.
- (v) These are used in making Vaseline like greases, which are used as lubricants in aeroplanes.
- (vi) Silicone−rubbers are useful as they retain their elasticity over a range of temperatures.

3.5.5 SILICATES

Silicates are metal derivatives of silicic acid, H4SiO⁴ or Si(OH)4. Silicates are formed by heating metal oxide or metal carbonates with sand, e.g.

 Na_2CO_3 Fused with sand $\overrightarrow{SiO_2}$ Na₄SiO₄, Na₂(SiO₃)_n, etc.

Silicates have basic unit of $SiO₄⁴$, each silicon atom is bonded with four oxide ions tetrahedrally. There are following types of silicates.

(i) Orthosilicates:

These silicates contain single discrete tetrahedral unit of SiO_4^{4-}

(ii) Pyrosilicates:

These silicates contain two units of $SiO₄⁴$ joined along a corner containing oxygen atom. These are also called as island silicate.

(iii) Cyclic structure:

Cyclic or ring silicates have general formula $(SiO_3^{2-})_n$ or $(SiO_3)^{2n-}$.

Structure and example of cyclic silicates containing $Si_3O_9^{6-}$ and $Si_6O_{18}^{12-}$ ions are given below.

(iv) Chain silicates

(a) Simple chain silicates or pyroxenes are formed by sharing two oxygen atoms by each tetrahedral. Anions

of such chain silicates have general formula $(SiO_3)_n^{2n-1}$

(b) Double chain silicates can be formed when two simple chains are joined together by shared oxygen atoms. These minerals are called amphiboles. The anions of such silicates have general formula $(Si_4O_{11})_n^{6n-1}$

In such silicates, three oxygen atoms of each tetrahedral are shared with adjacent $SiO₄^{4–}$ tetrahedral units.

Such sharing forms two–dimensional sheet structure with general formula $(Si_2O_5)_n^{2n-}$.

(vi) Three dimensional sheet silicates:

These silicates involve all four oxygen atoms in sharing with adjacent SiO_4^{4-} tetrahedral units. e.g.

mart No

Quartz, tridymite, crystobalite, feldspar, zeolite and ultramarines.

3.6 OXIDES AND CHLORIDES OF LEAD

3.6.1 LEAD MONOXIDE (PbO)

It is known in two forms:

(i) a yellow powder commonly known as massicot and

(ii) a buff coloured crystalline form known as litharge.

Preparation

It is obtained by heating lead or lead sulphide in air at 300°C (massicot form). When the temperature of oxidation is kept at 900°C, litharge is formed.

 $2Pb + O_2 \longrightarrow 2PbO$

 $2PbS + 3O_2 \longrightarrow 2PbO + 2SO_2$

It is also formed by heating lead nitrate or lead carbonate.

 $2Pb(NO₃)₂ \longrightarrow 2PbO + 4NO₂ + O₂$

 $PbCO₃ \longrightarrow PbO + CO₂$

Properties

It is insoluble in water. It is an amphoteric oxide. It dissolves both in acids and alkalies.

 $PbO + 2HNO₃ \longrightarrow Pb(NO₃)₂ + H₂O$ $PbO + 2NaOH \longrightarrow Na₂PbO₂ + H₂O$

On heating in air at 470°C, it forms red lead.

 $6PbO + O_2 \longrightarrow 2Pb_3O_4$ (red lead)

3.6.2 RED LEAD (Pb3O4)

Preparation

It is obtained by heating litharge at 470°C in air.

 $6PbO + O_2 \xrightarrow{470^{\circ}C} 2Pb_3O_4$

Properties

It is a red powder, insoluble in water. When heated, it becomes almost black, but it again becomes red on cooling. On heating above 470°C, it decomposes into PbO and O2.

 $2Pb_3O_4 \longrightarrow 6PbO + O_2$

When treated with concentrated $HNO₃$, lead nitrate and brownish black insoluble oxide, PbO₂, are formed. This indicates that Pb_3O_4 is a compound oxide containing both PbO_2 and PbO in the ratio of 1 : 2.

 $Pb_3O_4 + 4HNO_3 \longrightarrow 2Pb(NO_3)_2 + PbO_2 + 2H_2O$

With H_2SO_4 , it evolves oxygen,

 $2Pb_3O_4 + 6H_2SO_4 \longrightarrow 6PbSO_4 + 6H_2O + O_2$

It acts as an oxidising agent.

 $Pb_3O_4 + 8HCl \longrightarrow 3PbCl_2 + 4H_2O + Cl_2$

 $Pb_3O_4 + 4C \longrightarrow 3Pb + 4CO$

 $Pb_3O_4 + 4CO \longrightarrow 3Pb + 4CO_2$

3.6.3 LEAD CHLORIDE (PbCl2)

It is made by adding hydrochloric acid to a cold solution of lead salt.

Ī

 $Pb(NO₃)₂ + 2HCl \longrightarrow PbCl₂ + 2HNO₃$

It is only slightly soluble in cold water, but appreciably soluble in hot water. It dissolves in concentrated HCl forming a complex ion.

 $PbCl₂ + 2HCl \implies H₂PbCl₄$

(Chloroplumbous acid)

Note

Most of the plumbic compound are unimportant because they decompose readily on heating and are hydrolysed to PbO₂ by even cold water. An exception is tetraethyl lead, Pb(C_2H_5)₄, a colourless liquid which is used as an anti−knock agent in petrol.

3.7 OXIDES AND CHLORIDES OF TIN

3.7.1 STANNOUS OXIDE (SnO)

21 MAHESH SIR'S NOTES - 7798364224

mart No

SMARTL EARN COACHING

Preparation

 $SnCl₂ + 2NaOH \longrightarrow Sn(OH)₂ + 2NaCl$ **Stannous** chloride $Sn(OH)_2 \xrightarrow{Heat in CO_2 Atmosphere} SnO + H_2O$ $SnCl_2 + Na_2CO_3 \xrightarrow{Heat in atm of CO_2} SnO + CO_2 + 2NaCl$ Stannous chloride

Properties:

(i) It is a dark grey or black powder. It is insoluble in water.

(ii) It is burns in air with incandescence forming stannic oxide, $SnO₂$.

 $2SnO + O_2 \longrightarrow 2SnO_2$

(iii)It is an amphoteric oxide. It dissolves both in acids and alkalies.

 $SnO + 2HCl \longrightarrow SnCl₂ + H₂O$ Stannous chloride $SnO + 2NaOH \longrightarrow Na₂SnO₂ + H₂O$

Sodium stannite

Stannites are known only in aqueous solutions. Stannites absorb oxygen from air and are oxidised to stannates which are stable in nature.

 $2Na_2SnO_2 + O_2 \longrightarrow 2Na_2SnO_3$

Sodium stannate

3.7.2 STANNIC OXIDE (SnO2)

It is found in nature as Cassiterite or tin stone. **Preparation:**

> $\text{Sn} + \text{O}_2 \xrightarrow{\Delta} \text{SnO}_2$ $Sn + 4HNO₃ \longrightarrow H₂SnO₃ + 4NO₂ + H₂O$ $H_2SnO_3 \xrightarrow{\Delta} SnO_2 + H_2O$

Metastannic acid

Properties:

It is a white powder, insoluble in water. It is somewhat unreactive. However, it dissolves in concentrated

H2SO⁴ forming stannic sulphate.

 $SnO₂ + 2H₂SO₄ \longrightarrow Sn(SO₄)₂ + 2H₂O$

When the solution is diluted, stannic oxide is reprecipitated.

```
Sn(SO_4)_2 + 2H_2O \longrightarrow SnO_2 + 2H_2SO_4
```
It readily dissolves in alkalies forming stannates.

```
SnO<sub>2</sub> + 2KOH \longrightarrow K<sub>2</sub>SnO<sub>3</sub> + H<sub>2</sub>O
```
3.7.3 STANNOUS CHLORIDE (SnCl2)

Preparation:

(i) Hydrated stannous chloride $SnCl₂.2H₂O$ is prepared by dissolving tin in hot concentrated hydrochloric acid and subjecting the solution to crystallisation.

 $Sn + 2HCl \xrightarrow{\Delta} SnCl_2 + H_2$

Hydrated stannous chloride consists of two molecules of water as water of crystallisation $(SnCl₂.2H₂O).$

Anhydrous salt cannot be obtained by heating the hydrated salt as it undergoes hydrolysis and a white solid of tin hydroxy chloride is formed.

 $SnCl₂.2H₂O \longrightarrow Sn(OH)Cl + HCl + H₂O$

Ī

(ii) Anhydrous stannous chloride is formed when dry HCl gas is passed over hot tin.

 $Sn + 2HCl(g) \longrightarrow SnCl₂ + H₂$

It can also be obtained when a mixture of Sn and calculated quantity of mercuric chloride is heated. $Sn + HgCl_2 \longrightarrow SnCl_2 + Hg$

Properties:

- (i) It is a white crystalline solid. It is soluble in water, alcohol and ether.
- (ii) In water, it is soon hydrolysed. However in presence of HCl (acid), hydrolysis is revered.
- (iii)It forms a white precipitate with alkalies. The precipitate of stannous hydroxide, however, dissolves in excess of alkali.

 $SnCl₂ + 2NaOH \longrightarrow Sn(OH)₂ + 2NaCl$ $Sn(OH)₂ + 2NaOH \longrightarrow Na₂SnO₂ + 2H₂O$ Sodium stannite

(iv) It forms a dark brown precipitate of stannous sulphide on passing H2S through its solution. The precipitate dissolves in yellow ammonium sulphide.

 $SnCl₂ + H₂S \longrightarrow SnS + 2HCl$ $SnS + (NH_4)_2S_2 \longrightarrow (NH_4)_2SnS_3$ Yellow ammonium Ammonium thiostannate sulphide

- (v) It is a strong reducing agent. Few examples are given below:
- (a) It reduces mercuric chloride to mercurous chloride (white ppt) and finally to metallic mercury (dark grey or black).

Ī $2HgCl_2$ + SnCl₂ \longrightarrow Hg₂Cl₂ + SnCl₄ Mercurous chloride $Hg_2Cl_2 + SnCl_2 \longrightarrow 2Hg + SnCl_4$ (b) It reduces ferric salts to ferrous salts and cupric salts into cuprous salts. $2FeCl₃ + SnCl₂ \longrightarrow 2FeCl₂ + SnCl₄$ $2CuCl₂ + SnCl₂ \longrightarrow 2CuCl + SnCl₄$ (c) It decolourises iodine and thus can be titrated with it. $SnCl₂ + 2HCl + I₂ \longrightarrow SnCl₄ + 2HI$ (d) Organic nitro compounds are reduced to amino compounds. $C_6H_5NO_2$ + 6HCl + 3SnCl₂ $\longrightarrow C_6H_5NH_2$ + 3SnCl₄ + 2H₂O Nitrobenzene Aniline (e) It reduces gold chloride to metallic gold. $2AuCl_3 + 3SnCl_2 \longrightarrow 2Au + 3SnCl_4$ Colloidal gold SnCl⁴ undergoes hydrolysis forming stannic acid which absorbs colloidal particle of gold and thus forms purple of cassius. **3.7.4 STANNIC CHLORIDE (SnCl4) Preparation:** $Sn + 2Cl_2 \longrightarrow SnCl_4$ (fused) dry **Properties:** (i) It is a colourless fuming liquid having disagreeable smell. (ii) It is hygroscopic and forms crystalline hydrates containing 3, 5, 6 and 8 molecules of water as water of crystallisation. The pentahydrate SnCl₄.5H₂O, is known as "butter of tin" or "oxymuriate of tin". (iii)It is soluble in water in which it undergoes hydrolysis. $SnCl₄ + 4H₂O \longrightarrow Sn(OH)₄ + 4HCl$ It is also soluble in organic solvents showing that it is a covalent compound. (iv) It dissolves in concentrated HCl forming chlorostannic acid. In presence of ammonium chloride, it forms ammonium salt of this acid. $SnCl₄ + 2HCl \longrightarrow H₂SnCl₆$ Chlorostannic acid $SnCl₄ + 2NH₄Cl \longrightarrow (NH₄)₂SnCl₆$ Ammonium chloro stannate

 4

THE GROUP – 15 ELEMENTS (NITROGEN FAMILY)

4.1 GENERAL PROPERTIES AND STRUCTURES OF THE ELEMENTS

(i) The first element nitrogen differs from the rest. Nitrogen is a colourless, odourless, tasteless gas, which is diamagnetic and exists as N_2 . The other elements are solids and exist as several allotropic forms. The N_2 molecule contains a triple bond $N=N$. This bond is very stable, and the dissociation energy is consequently very high. Thus N_2 is inert at room temperature, though it does react with Li, forming the nitride Li₃N. Other isoelectronic species such as CO, CN⁻ and NO⁺ are much more reactive than N₂, and this is because the bonds are partly polar, whilst in N_2 they are not.

(ii) The majority of compounds formed by this group are covalent. A coordination number of

4 is obtained if the lone pair is donated to another atom or ion. An example is the ammonium ion NH_4^+ .

It requires too much energy to remove all five outer electrons so $M⁺⁵$ ions are not formed. However, Sb and Bi can lose just three electrons, forming M^{+3} ions, but the ionisation energy is too high for the other elements to do so. Both SbF_3 and BiF_3 exist as ionic solids.

The M^{+3} ions are not very stable in solution. They can exist in fairly strong acid solutions, but are rapidly hydrolyzed in water to give the antimony oxide ion or bismuth oxide ion SbO⁺ and BiO⁺. This change is reversed by adding 5 M HCl.

$$
Bi^{+3} \xrightarrow{H_2O} [BiO]^+
$$

\n
$$
BiCl_3 + H_2O \xrightarrow{HCl} BiOCl + 2HCl
$$

(iii) Strength of oxoacids of group VB elements

For an oxidation state of $+ 5$, the strengths of various acids of group 15 elements follow the order, $HNO₃$ $>$ H₃PO₄ $>$ H₃AsO₄ $>$ H₃SbO₄

For the oxyacids involving the same element in different oxidation states, the strength of an acid depends upon the number of unhydrogenated oxygen atoms attached to the central atom. For example, for the oxyacids of the type $(OH)_m ZO_n$, the acid strength varies directly with the value of n. Thus, nitric acid $(HNO₃)$ is stronger than nitrous acid $(HNO₂)$.

The acids H_3PO_2 , H_3PO_3 and H_3PO_4 are approximately of equal strength, because all these acids contain only one unhydrogenated oxygen atom each. The order of acid strength is $H_3PO_2 > H_3PO_3 > H_3PO_4$.

4.2 NITROGEN

4.2.1 PREPARATION OF NITROGEN

(i) $NH_4NO_2 \xrightarrow{\Delta} N_2 + 2H_2O$

Since ammonium nitrite is very unstable, it cannot be kept as such. Hence nitrogen is usually prepared by heating a mixture of ammonium chloride and sodium nitrite.

NH₄Cl + NaNO₂
$$
\xrightarrow{\Delta}
$$
 NH₄NO₂ + NaCl
NH₄NO₂ $\xrightarrow{\Delta}$ N₂ + 2H₂O

(ii) Ammonium dichromate on heating decomposes to give nitrogen gas.

4.2.2 ATOMIC AND PHYSICAL PARAMETERS OF NITROGEN

4.2.3 FIXATION OF ATMOSPHERIC NITROGEN IN CYANAMIDE FERTILIZER (THE CYANAMIDE PROCESS)

Nitrogen is also fixed as calcium cyanamide on heating it with calcium carbide at 1000°C in an electric furnace.

 $CaC₂ + N₂$ electric furnace $CaCN₂ + C$ calcium carbide calcium cyanamide calcium cyanamide The mixture of calcium cyanamide and carbon (trade name Nitrolim) is an important fertilizer. Calcium cyanamide may also be used as a source of ammonia. The ammonia so produced can be converted into useful fertilizers. Calcium cyanamide is decomposed by water to give ammonia.

$CaCN_2$	+	$3H_2O$	—	$CaCO_3$	+	$2NH_3$
$2NH_3$	+	H_2SO_4	—	$(NH_4)_2SO_4$		
$P_2O_5 + 6NH_3$	+	$3H_2O$	—	$2(NH_4)_3PO_4$		
$CaCl_2$	+	$8NH_3$	—	$CaCl_2.8NH_3$		
By the hydrolysis of metal nitrides	$NaAlO_2$	+	NI_3			
AMMONIA	—	$NaAlO_2$	—	NI_3		

4.3 AMMONIA 4.3.1 STRUCTURE OF AMMONIA

Ammonia is a covalent molecule. The ammonia molecule is formed due to the overlap of three $sp³$ hybrid orbital of N and 1s orbital of each of the three hydrogen atoms. The fourth $sp³$ hybrid orbital of N is occupied by a lone−pair. The H−N−H angle is 107.3°. The H−N−H bond angle is slightly less than the tetrahedral angle of 109°28' due to the lone pair – bond pair repulsions, which tend to push the N–H bonds slightly inwards. In liquid and solid state, ammonia is associated due to hydrogen bonding.

4.3.2 REACTIONS OF AMMONIA

With halogens

Ammonia reacts with halogens and the nature of products depends upon the halogen and the reaction conditions.

(a) With chlorine

With limited amount of chlorine, ammonium chloride is formed but with excess of chlorine nitrogen trichloride is formed.

 $8NH_3 + 3Cl_2(limited) \longrightarrow 6NH_4Cl + N_2$

mart No

 $NH_3 + 3Cl_2(excess) \longrightarrow NCl_3 + 3HCl$

(b) With bromine

 $8NH_3 + 3Br_2 \longrightarrow 6NH_4Br + N_2$

(c) With iodine

 $8NH_3.NI_3 \longrightarrow 5N_2 + 9I_2 + 6NH_4I$ $2NH_3 + CO_2 \frac{200°C}{80-100 \text{ atm.}}$ 200° C $\frac{200^{\circ}C}{80-100 \text{ atm}}$ NH₂CONH₂ + H₂O

Action with heavy metal ions

With the metal ions of Al, Fe, Cr and Zn, it forms metal hydroxides, which are insoluble and form precipitates.

Formation of complex compounds

It forms complex compounds with the soluble salts of copper, silver etc. With copper sulphate solution, it gives a deep blue coloured complex compound, tetramminecopper(II) sulphate.

 $CuSO₄ + 4NH₄OH \longrightarrow [Cu(NH₃)₄]SO₄ + 4H₂O$ tetramminecopper(II) sulphate $AgOH + 2NH_3 \longrightarrow [Ag(NH_3)_2]OH$ diammine silver(I) hydroxide AgCl + $2NH_3 \longrightarrow [Ag(NH_3)_2]Cl$ insoluble diammine silver(I) chloride in water (soluble in water)

4.4 OXIDES OF NITROGEN

Oxides of nitrogen provide a fascinating picture from the point of view of their varied structures and diverse chemical behaviour. They range from N_2O (oxidation state of nitrogen +1) through NO, N_2O_3 , $NO₂$, N₂O₄ to N₂O₅ in which the oxidation state of nitrogen is +5. Nitric oxide(NO) is colourless, neutral, paramagnetic in which nitrogen has +2 oxidation state.

Preparation

Some common methods of preparation of oxides of Group VB elements are described below. Oxides of nitrogen can be prepared by the methods given below.

Structures

The oxides of nitrogen differ from those formed by P, As, Sb and Bi in their structures. The structures of nitrogen oxides are dictated by the tendency of nitrogen to form $p\pi$ – $p\pi$ multiple bonds. The structures of nitrogen oxides are given in figure.

Nitric Oxide (NO)

NO has 11 valency electrons. It is impossible for them all to be paired and hence this is an odd electron molecule and the gas is paramagnetic. It is diamagnetic in the liquid and solid states, because the molecule dimerizes, forming O−N−N−O.

NO readily forms coordination complexes with transition metal ions. These complexes are called nitrosyls. Fe²⁺ and NO form the complex $[Fe(H₂O)₅NO]²⁺$, which is responsible for the colour in the 'brown−ring test for nitrates. Most nitrosyl complexes are coloured. Another example is sodium nitroprusside $Na₂[Fe(CN)₅NO]$. $2H₂O$.

Nitrogen dioxide NO² and dinitrogen tetroxide N2O⁴

NO₂ is a red–brown poisonous gas and is produced on a large scale by oxidizing NO in the Ostwald process for the manufacture of nitric acid. In the laboratory, it is prepared by heating lead nitrate:

$2Pb(NO₃)₂ \longrightarrow 2PbO + 4NO₂ + O₂$

The gaseous products O_2 and NO_2 are passed through a U–tube cooled in ice. The NO₂ (boiling point 21[°]C) condenses. The Pb(NO₃)₂ must be carefully dried, since NO₂ reacts with water. The NO₂ is obtained as a brown liquid, which turns paler on cooling and eventually becomes a colourless solid. This is because $NO₂$ dimerizes into colourless $N₂O₄$. $NO₂$ is an odd electron molecule and is paramagnetic and very reactive. It dimerizes to N_2O_4 , pairing the previously unpaired electrons. N_2O_4 has no unpaired electrons and is diamagnetic.

4.5 OXOACIDS OF NITROGEN

Manufacture of HNO³

1. Ostwald process

$$
4NH_3 + 5O_2 \xrightarrow{\text{Pt-Rh}} 4NO + 6H_2O
$$

 $2NO + O_2 \longrightarrow 2NO_2$

 $3NO₂ + H₂O \longrightarrow 2HNO₃ + NO$

The nitric acid prepared is of 50% concentration.

2. Birkeland Eyde process

 $N_2 + O_2 \xrightarrow[\text{arc}]{\text{Electric}} 2NO$ $2NO + O_2 \xrightarrow{1000^{\circ}C} 2NO_2$ $2NO₂ + H₂O \longrightarrow HNO₃ + HNO₂$ $3HNO₂ \longrightarrow HNO₃ + 2NO + H₂O$ 60%

CHEMICAL PROPERTIES OF NITRIC ACID

 $C + 4HNO₃ \longrightarrow H₂CO₃ + H₂O + 4NO₂$

mart Notes

 $S + 6HNO₃ \longrightarrow H₂SO₄ + 6NO₂ + 2H₂O$ Iodine is oxidised to iodic acid $(HIO₃)$. I_2 + 10HNO₃ \longrightarrow 2HIO₃ + 10NO₂ + 4H₂O P + 5HNO₃ \longrightarrow H₃PO₄ + 5NO₂ + H₂O **(a) Metals that are more electropositive than hydrogen** (i) Action on zinc $Zn + 4HNO₃(conc.) \longrightarrow Zn(NO₃)₂ + 2H₂O + 2NO₂$ $4Zn + 10HNO₃(dil.) \longrightarrow 4Zn(NO₃)₂ + 5H₂O + N₂O$ $4Zn + 10HNO₃(v. dil.) \longrightarrow 4Zn(NO₃)₂ + NH₄NO₃ + 3H₂O$ $4Mg + 10HNO₃(v. dil.) \longrightarrow 4MgNO₃)₂ + NH₄NO₃ + 3H₂O$ (ii) Action on tin $Sn + 4HNO₃(conc.) \longrightarrow H₂SnO₃ + 4NO₂ + H₂O$ Metastannic acid $4Sn + 10HNO₃(dilute) \longrightarrow 4Sn(NO₃)₂ + NH₄NO₃ + 3H₂O$ Stannous nitrate (iii)Action on lead $Pb + 4HNO₃(conc.) \longrightarrow Pb(NO₃)₂ + 2NO₂ + 2H₂O$ $3Pb + 8HNO₃(dilute) \longrightarrow 3Pb(NO₃)₂ + 2NO + 4H₂O$ (iv) Action on iron Fe $+ 6HNO₃(conc.) \longrightarrow Fe(NO₃)₃ + 3NO₂ + 3H₂O$ $4Fe$ + 10HNO₃(dil.) \longrightarrow $4Fe(NO_3)_2 + N_2O$ + 5H₂O $4Fe$ + 10HNO₃(v. dil.) \longrightarrow $4Fe(NO_3)_2 + NH_4NO_3 + 3H_2O$ **(b) Metals that are less electropositive than hydrogen** Action on copper $Cu + 4HNO₃(conc.) \longrightarrow Cu(NO₃)₂ + 2NO₂ + 2H₂O$ $3Cu + 8HNO₃(v. dil.) \longrightarrow 3Cu(NO₃)₂ + NO + 4H₂O$ **Formation of aqua**−**regia** A mixture of conc. HCl and conc. HNO³ (3:1 by volume) is called aqua−regia. It can dissolve noble metals like gold and platinum. $HNO₃ + 3HCl \longrightarrow 2H₂O + 2Cl + NOCl$ Au + 3Cl \longrightarrow AuCl₃; AuCl₃ + Cl⁻ \longrightarrow [AuCl₄]⁻ Pt + 4Cl \longrightarrow PtCl₄ ; PtCl₄ + 2Cl⁻ \longrightarrow [PtCl₆]⁻² **4.6 PHOSPHORUS** Phosphorus is a very reactive element, so it does not occur free in nature. The ores of phosphorus which normally occur in nature are given as follows (i) Phosphorite, $\text{Ca}_3(\text{PO}_4)_2$ (ii) Fluorapatite $3Ca_3(PO_4)_2.CaF_2$ (iii) Chlorapatite, $3Ca_3(PO_4)_2.CaCl_2$ **4.6.1 EXTRACTION OF PHOSPHORUS** Phosphorus is obtained by heating bone ash or phosphorite rock $[Ca_3(PO_4)_2]$, with sand (SiO_2) and coke (C) in an electric furnace at about 1770 K. The reactions are as follows. $2Ca_3(PO_4)_2$ + $6SiO_2 \longrightarrow 6CaSiO_3$ + P_4O_{10} P_4O_{10} + 10C \longrightarrow P_4 + 10CO

4.6.2 ALLOTROPES OF PHOSPHORUS

SMARTLEARN COACHING

Phosphorus exists in the following five different allotropic forms.

- (i) White (yellow) phosphorus is extremely reactive.
- (ii) Below 800 $^{\circ}$ C, its vapor density corresponds to the formula P₄. Above 1700 $^{\circ}$ C, it exists as P₂.

(iii) Due to its low ignition temperature $({\sim} 30^{\circ}C)$, it undergoes oxidation in the presence of air which slowly raises its temperature and after a few moments it catches fire spontaneously. Due to this reason, it is stored under water.

Red Phosphorus

Red phosphorus is stable allotrope at room temperature. Red phosphorus is formed by heating white phosphorus in the absence of air at about 250°C. It is not poisonous. It is safe to handle because it does not burn spontaneously at room temperature.

Structure of red phosphorus

- (i) Ignition temperature of red phosphorus is high $\sim 265^{\circ}$ C).
- (ii) It sublimes on heating. It melts at 610° C under pressure giving yellow liquid, which on cooling gives white phosphorus.
- (iii) It is insoluble in carbon disulphide.
- (iv) Red phosphorus has a polymeric structure.

4.6.3 Properties of Phosphorus

Important chemical properties of phosphorus are

(i) Reaction with oxygen:

Yellow phosphorus readily catches fire in air giving dense white fumes of phosphorus pentoxide. Red phosphorus combines with oxygen only on heating. Both of them form either phosphorus trioxide or phosphorus pentoxide.

SMARTLEARN COACHING

- $\mathsf{P_4}$ + 20HNO $_3$ \longrightarrow 4H $_3$ PO $_4$ + 20NO $_2$ + 4H $_2$ O Phosphoric acid
- **(v) With metals:** Phosphorus reacts with metals forming phosphides. For example $6Mg + P_4$ \rightarrow 2Mg₃P₂

Magnesium phosphide

4.7 PHOSPHINE

(i) By hydrolysing metallic phosphides

Convenient methods of preparing phosphine are by the hydrolysis of metallic phosphides with water or dilute mineral acids.

(ii) Phosphine may also be obtained by heating phosphorus acid.

 $4H_3PO_3$ heat phosphorus acid $3H_3PO_4$ + PH_3

With metallic salts: Formation of phosphides

Phosphine unlike ammonia does not precipitate hydroxides of metals on reacting with salt solutions. On the other hand, it precipitates metals like silver, copper etc., as phosphides when phosphine gas is passed through aqueous solutions of salts of these metals.

Uses of Phosphine

- (i) It is used for producing smoke screens. Calcium phosphide is used in smoke screens. Phosphine obtained catches fire to give the needed smoke.
- (ii) In Holme's signals. A mixture of calcium carbide and calcium phosphide is taken in a container which is pierced and thrown into the sea. Phosphine liberated catches fire and lights up acetylene. Burning gases serve as a signal to the approaching ships.

4.8 OXIDES OF PHOSPHOROUS

4.9 OXOACIDS OF PHOSPHORUS

Phosphorus forms a large number of oxoacids. All these acids are based on tetrahedral four coordinated phosphorus atom containing at least one P=O unit and one P–OH group. Condensed systems are formed

mart No

by P–O–P linkage or P–P linkage. Some of the common oxo-acids of phosphorus are given on the next page.

Phosphorus mainly forms two series of oxoacids:

- 1. The phosphoric series of acids, in which the oxidation state of P is (V) and in which the compounds
- have oxidizing properties.
- 2. The phosphorous series of acids, which contain P in the oxidation state (III) and which are reducing agents.

In all of these, P is four co−ordinate and tetrahedrally surrounded wherever possible.

 $p\pi$ –d π back bonding gives rise to P=O bonds. The hydrogen atoms in OH groups are ionisable and are acidic, but the P−H bonds found in the phosphorous acids have reducing, not acidic, properties. Simple phosphate ions can condense (polymerise) together to give a wide range of more complicated isopolyacids or their salts.

The Phosphoric acid series

Orthophosphoric acid

The simplest phosphoric acid is H_3PO_4 (orthophosphoric acid). The acid contains three replaceable H atoms, and is tribasic. It undergoes stepwise dissociation.

$$
H_3PO_4 \implies H^+ + H_2PO_4^- \; ; \; K_{a_1} = 7.5 \times 10^{-3}
$$
\n
$$
H_2PO_4^- \implies H^+ + HPO_4^{2-} \; ; \; K_{a_2} = 6.2 \times 10^{-8}
$$

mart Not

 $\mathsf{HPO}^{2-}_4 \quad \Longleftrightarrow \quad \mathsf{H}^+ \, + \, \mathsf{PO}^{3-}_4 \quad \, ; \; \, \mathsf{K}_{\mathsf{a}_3} = 1 \times 10^{-12}$

Three series of salts can be formed

- 1. Dihydrogen phosphates, for example sodium dihydrogen phosphate NaH₂PO₄, which is slightly acidic in water
- 2. Monohydrogen phosphates, for example disodium hydrogen phosphate $Na₂HPO₄$, which is slightly basic in water.
- 3. Normal phosphates such as trisodium phosphate Na₃PO₄, which are appreciably basic in solution. $NaH₂PO₄$ and Na₂HPO₄ are made industrially by neutralizing $H₃PO₄$ with soda ash (Na₂CO₃), but NaOH is required to make Na3PO4. All three salts exist in the anhydrous state and also in a number of hydrated forms, and they are used extensively.

Phosphoric acid also forms esters with alcohols:

$$
(HO)3P = O + 3EtOH \longrightarrow (EtO)3P = O + 3H2Oacid(triethyl phosphate)
$$

Phosphates are detected analytically by mixing a solution of the salt with dilute $HNO₃$ and ammonium molybdate solution. A yellow precipitate of a complex ammonium 12-molybdophosphate forms slowly, confirming the presence of phosphates. Arsenates form a similar precipate but only on heating the mixture.

The orthophosphates of group I metals (except Li) and NH_4^+ are soluble in water. Most of the other metal orthophosphates are soluble in dilute HCl or acetic acids. Titanium, zirconium and thorium phosphates are insoluble even in acids. Thus in qualitative

analysis a solution of zirconyl nitrate is commonly added to remove any phosphate present in solution. Phosphates can be estimated quantitatively by adding a solution containing Mg^{2+} and NH₄OH solution to a solution of the phosphate. Magnesium ammonium phosphate is precipitated quantitatively, and this is filtered, washed, ignited, and weighed as magnesium pyrophosphate $Mg_2P_2O_7$.

$$
Mg^{2+} + NH_4^+ + PO_4^{3-} \longrightarrow MgNH_4PO_4
$$

Structure of orthophosphoric acid, H₃PO₄

Impure orthophosphoric acid H_3PQ_4 is prepared in large amounts by treating phosphate rock with H_2SO_4 . The CaSO₄ is hydrated to gypsum CaSO₄. 2H₂O, which is filtered off, and the F⁻ is converted to $\text{Na}_2[\text{SiF}_6]$ and removed. The H₃PO₄ is concentrated by evaporation. Most of the H₃PO₄ made in this way is used to make fertilizer.

 $Ca_3(PO_4)_2 + 3H_2SO_4 \longrightarrow 2H_3PO_4 + 3CaSO_4$

 $[3(Ca_3(PO_4)_2)$. CaF₂] + 10H₂SO₄ + 16 H₂O \longrightarrow 6H₃PO₄ + 10CaSO₄ + 2HF

Pure H_3PO_4 is made by the 'furnace process'. Molten P is burnt in a furnace with air and steam. First P4O¹⁰ is formed by reaction between P and O, and then this is immediately hydrolysed.

$$
P_4 + 5O_2 \longrightarrow P_4O_{10}
$$

$$
P_4O_{10}+6H_2O\!\!\!\longrightarrow 4H_3PO_4
$$

Phosphoric acid is hydrogen bonded in aqueous solution, and because of this the 'concentrated acid' is syrupy and viscous. Concentrated acid is widely used and contains about 85% by weight of $H_3PO_4(100\%)$ pure (anhydrous) H_3PO_4 is seldom used, but it can be prepared as colourless deliquescent crystals by evaporation at low pressure). Most of the acid (solution) made in this way is used in the laboratory, and in food (Kraft cheese $Na₂HPO₄$) and pharmaceutical preparations.

rt Not

 H_3PO_4 may also be made be the action of concentrated HNO_3 on P.

 $P_4 + 20HNO_3 \longrightarrow 4H_3PO_4 + 20NO_2 + 4H_2O$

Orthophosphoric acid loses water steadily on heating.

Polyphosphates

A very large number of polyphosphoric acids and their salts, the polyphosphates, arise by polymerising acidic [PO4] units forming isopolyacids. These consists of chains of tetrahedral, each sharing the O atoms at one or two corners of the [PO4] tetrahedron, giving simple unbranched chains, in a similar way to the formation of pyroxenes

by the silicates.

The hydrolysis of P₄O₁₀ proceeds in stages, and an understanding of these stages leads to an understanding of the wide range of phosphoric acids.

Polyphosphates are straight chain compounds. The basicity of the various acids, that is the number of replaceable H atoms, can be found by drawing the structure and counting the number of OH groups. Thus, orthophosphoric acid is tribasic, pyrophosphoric acid is tetrabasic, tripolyphosphoric acid is pentabasic, tetrapolyphosphoric acid is hexabasic, and tetrametaphosphoric acid is tetrabasic.

4.10 PENTAHALIDES OF PHOSPHORUS

The trigonal bipyramidal is not a regular structure. Electron diffraction on PF₅ gas shows that some bond angles are 90° and others are 120° , and the axial P–F bond lengths are 1.58 Å whilst the equatorial P–F lengths are 1.53 Å. In contrast nmr studies suggest that all

five F atoms are equivalent. This paradox may be explained quite simply. Electron diffraction gives an instantaneous picture of the molecule, whilst nmr gives the picture averaged over several milliseconds. The axial and equatorial F atoms are thought to interchange their positions in less time than that needed to take the nmr. The interchange of axial and equatorial positions is called 'pseudorotation'. PF $_5$ remains covalent and keeps this structure in the solid state. However, PCl₅ is close to the ionic−covalent borderline, and it is covalent in the gas and liquid states, but is ionic in the solid state. $PCl₅$ solid exists as [PCl₄]⁺ and [PCl₆]⁻ the ions have tetrahedral and octahedral structures respectively. In the solid, PBr₅ exists as $[PBr_4]^+$ Br and PI_5 appears to be $[PI_4]^+$ and I^- in solution.

4.11 INTERNAL −**BONDING USING d**−**ORBITALS**

The compounds trimethylamine $(CH_3)_3N$ and trisilylamine $(SiH_3)_3N$ have similar formulae, but have totally different structures. In trimethylamine, the arrangement of electrons is as follows:

Electronic structure of nitrogen atom−ground state

In trisilylamine, three sp² orbitals are used for σ bonding, giving a plane triangular structure. The lone pair of electrons occupy a p−orbitals at right angles to the plane triangle. This overlaps with empty d–orbitals on each of the three silicon atoms, and results in π –bonding, more accurately described as $p\pi$ −d π bonding, because it is from a full p−orbital to an empty d−orbital. This shortens the bond lengths of N−Si bond. Since, the nitrogen no longer has a lone pair of electrons, the molecule has no donor properties. Similar p π –d π bonding is impossible in (CH₃)₃N because C does not possess d–orbitals and hence this molecule is pyramidal. About 200 compounds are now thought to contain $p\pi$ –d π bonds.

THE GROUP – 16 ELEMENTS (OXYGEN FAMILY) 5

5.1 GENERAL PHYSICAL PROPERTIES OF OXYGEN FAMILY ELEMENTS

Group VI(B) of the periodic table contains five elements namely oxygen, sulphur, selenium, tellurium and polonium. They are collectively called **chalcogens** or ore forming elements because many metal ores occur as oxides or sulphides. The first four members are non−metals while the last member polonium is a radioactive metal having very short half−life. Atoms of the elements have the outermost electronic configuration as $\text{ns}^2 \text{np}_x^2 \text{np}_y^1 \text{np}_z^1$ y ns²np²₁np¹₁, Thus, there are two half filled p–orbitals which are used for bonding with other elements. Some properties of these elements are given in the following table:

(i) Atomic and ionic radii

Atomic (covalent) radius increases as we go down the group.

 $0 < S <$ Se $<$ Te $<$ Po

Ionic radius for dinegative ions (M²⁻⁻) also increases from oxygen to polonium. The order is, $\rm O^{2-}<~S^{2-}<~\rm Se^{2-}<~\rm Te^{2-}$

(ii) Catenation

The self-linking property of atoms with identical atoms is called catenation. Oxygen shows a little tendency towards catenation, e.g., in peroxides, $[-O-O]-]^{2-}$.

Sulphur shows a strong tendency towards catenation, e.g., in polysulphides S_n^{2-} sulphanes $(H - S_n - H)$, polysulphuric acid (HO₃S.S_n.SO₃H), and in various allotropes. The S – S bond is very important in the biological systems. The S – S bonding is found in compounds such as, cysteine, some proteins and enzymes. The catenation tendency decreases markedly as we go down the group.

(iii) Density

Density of group VIB elements increases in going from oxygen to polonium, i.e., the density of group 16 elements follows the order,

 $O < S <$ Se $< Te < Po$

(iv) Melting points and Boiling points

The melting and boiling points show regular increase with the increase in atomic number. As we go down the group, the molecular size increases. As a result vander Waal forces increase and hence the melting and boiling points also increase.

imart Notes

(v) Electron Affinity vs Electron Gain Enthalpy

It has been recommended by IUPAC to replace the term Electron Affinity (E_{ac}) by a new term, Electron Gain Enthalpy ($\Delta_{ee}H$).

The electron gain enthalpy is the molar enthalpy change when an isolated gaseous atom or ion in its ground state, adds an electron to form the corresponding anion. Thus, the enthalpy change for the reaction,

 $X(g) + e^- \longrightarrow X^-(g)$

is called the electron gain enthalpy ($\Delta_{ee}H$) of the element X. The $\Delta_{ee}H$ may be positive or negative (like the electron affinity).

Electron affinity (E_{ae}) , or Electron gain enthalpy $(\Delta_{ee}H)$ of oxygen and sulphur are given below:

 $O(g) + e^- \longrightarrow O^-(g)$ $E_{ae}(O \rightarrow O^-) = -142 \text{ kJ mol}^{-1}$ $S(g) + e^- \longrightarrow S^-(g)$ $E_{ae}(S \rightarrow S^-) = -200 \text{ kJ mol}^{-1}$ $O^-(g) + e^- \longrightarrow O^{2-}(g)$ $E_{ae}(O^- \rightarrow O^{2-}) = +780 \text{ kJ mol}^{-1}$

 $S^-(g) + e^- \longrightarrow S^{2-}(g)$ $E_{ae} (S^- \rightarrow S^{2-}) = + 590 \text{ mol}^{-1}$

Thus, the electron affinities for $O \rightarrow O^{2-}$ and $S \rightarrow S^{2-}$ are positive.

The first electron affinity of oxygen is much smaller than those of the other elements.

Electron affinity becomes smaller as we go down the group, i.e., from sulphur to tellurium.

 $0 < S > Se > Te > Po$

(vi) Ionisation energy or ionisation enthalpy, Δ_i **H**

The ionisation energies of group VIB elements are quite high. Due to their high ionisation energies, it is extremely difficult to remove electrons from the atoms of these elements.

The ionisation energy decreases as we go from oxygen to polonium.

The first ionisation energies of lighter elements of group VIB (oxygen family) are lower than those of group VB, (nitrogen family).

(vii) Oxidation states

The outer electronic configuration of group VIB elements can be described as ns²np⁴. Being strongly electronegative, these elements complete their outer shells by gaining two electrons. Thus, all the elements of group 16 shows an oxidation state of -2 . However, these elements also show other oxidation states as follows. Oxygen shows an oxidation state of $+ 2$ in F₂O, and -1 in peroxides (O₂²). Other elements of group VIB exhibit oxidation states of $+ 2$, $+ 4$ and $+ 6$ also. The oxidation states of $+ 4$ and $+ 6$ 6 being

more stable.

For sulphur, selenium and tellurium, the oxidation states of $+4$ and $+6$ are important. The $+4$ state is more stable for Se , Te and Po, than $+ 6$ state. This is due to the availability of d-orbitals in the valence shells of the atoms of these elements.

(viii) Molecular structure (or atomicity)

Oxygen forms stable diatomic (O_2) molecules, while sulphur, selenium, tellurium and polonium are octatomic molecules, viz., S₈, Se₈, Te₈ and Po₈ with puckered-ring structures. The puckered ring structure of sulphur is shown in figure. Under ordinary conditions, oxygen exists as a gas, while all other elements of this group are solids.

Explanation: This is because oxygen has a tendency to form $p\pi - p\pi$ multiple bonds. So, oxygen forms a diatomic (O = O) molecule. Due to weak Van der Waals' forces between the oxygen molecules, oxygen exists as a gas. Because of their large atomic size, sulphur and other heavier elements of this group do not form stable $p_{\pi} - p_{\pi}$ bonds. So, these elements do not occur as diatomic molecules. Instead, S and other heavier elements of this group form $M - M$ single bonds giving rise to polyatomic molecules. For example, sulphur forms octatomic (S_8) molecules. Due to stronger Van der Waals' forces between these polyatomic

 (S_8) molecule

molecules, these elements (sulphur and others) exists as solid.

Allotropic forms of sulphur

Sulphur exists in several allotropic forms, the important ones are described below.

Rhombic or octahedral or −**sulphur**

This is the common form of sulphur. It is pale yellow in colour. It melts at 114.5°C. Its specific gravity is 2.06. It is insoluble in water but readily soluble in CS_2 . It is a crystalline variety and consists of S_8 structural units packed together into octahedral shape. This is the stable variety at ordinary temperature and all other forms gradually change into this form.

Monoclinic or prismatic or β–sulphur

This form is formed by melting sulphur in a dish and cooling till crust is formed. Two holes are made in the crust and liquid is poured out. On removing the crust, needle shaped crystals of monoclinic sulphur are obtained.

This form of sulphur is stable above 95.6 \degree C. Crystals melt at 119 \degree C. It is also soluble in CS₂. Below 95.6°C, it changes into rhombic form. Thus, 95.6 °C is the transition temperature.

Rhombic sulphur $\frac{\text{95.6}^{\circ}\text{C}}{1}$ Monoclinic sulphur

Plastic sulphur

This is obtained when boiling sulphur is passed into cold water. It is soft rubber like mass which hardens on standing and gradually changes into rhombic sulphur. It is amber−brown in colour and has specific gravity of 1.95. It is insoluble in CS_2 and has no sharp melting point. It consists of a completely random arrangement of chains of sulphur atoms.

(ix) Metallic character

The metallic character of group 16 elements increases with atomic number, i.e., as we go down the group. Thus, oxygen and sulphur are typical non-metals and are insulators; so Se and Te are semiconductors, and polonium is metallic in nature.

5.2 GENERAL CHEMICAL PROPERTIES

Oxygen is quite reactive. It reacts with almost every element, except lighter noble gases. Rest of the elements

of this group are relatively less reactive. Oxygen differs from other elements of group 16 due to,

- **(a) its small size,**
- **(b) high electronegativity,**
- (c) **tendency to form** $p_{\pi} p_{\pi}$ **double bonds,**

(d) its inability to expand its valence shell due to the absence of d-orbitals in its valence shell. However, oxygen resembles nitrogen and fluorine in the following respects.

- (a) Like nitrogen and fluorine, oxygen forms strong hydrogen bonds.
- (b) Like nitrogen, oxygen can also form stable $p_{\pi} p_{\pi}$ bonds.

5.3 OXYGEN

Oxygen can be synthesised in the laboratory by the following methods: (a) Thermal decomposition of metal oxides

Ī

 $2HgO \longrightarrow 2Hg + O_2$ $2\text{Ag}_2\text{O} \xrightarrow{350^\circ\text{C}} 4\text{Ag} + \text{O}_2$ $3\text{MnO}_2 \xrightarrow{\Delta} \text{Mn}_3\text{O}_4 + \text{O}_2$ $3Pb_3O_4 \xrightarrow{\Delta} 6PbO + O_2$

(b) Thermal decomposition of oxygen rich salts

$$
KNO_3 \xrightarrow{\Delta} 2KNO_2 + O_2
$$

\n
$$
4K_2Cr_2O_7 \xrightarrow{400^{\circ}C} 4K_2CrO_4 + 2Cr_2O_3 + 3O_2
$$

\n
$$
2KMnO_4 \xrightarrow{250^{\circ}C} K_2MnO_4 + MnO_2 + O_2
$$

\n
$$
2KClO_3 \xrightarrow{400^{\circ}C} 2KCl + 3O_2
$$

(c) Heating MnO₂, KMnO₄ or $K_2Cr_2O_7$ with concentration H_2SO_4 $2MnO_2 + 2H_2SO_4 \longrightarrow 2MnSO_4 + 2H_2O + O_2$ $4KMnO_4 + 6H_2SO_4 \longrightarrow 2K_2SO_4 + 4MnSO_4 + 6H_2O + SO_2$ $2K_2Cr_2O_7 + 8H_2SO_4 \longrightarrow 2K_2SO_4 + 2Cr_2(SO_4)_3 + 8H_2O + 3O_2$

Practically all the elements react with O_2 to form oxides, which may be classified according to their structure as normal oxides, peroxides or suboxides.

5.4 OZONE

Oxidising property

Ozone acts as a powerful oxidising agent due to the reaction,

Structure of ozone

The structure of ozone is given in below figure. The bond length of 127.8 pm is intermediate between a single bond (bond length 148 pm) and a double bond (bond length 110 pm.) Ozone is, therefore, considered to be a resonance hybrid of the following canonical forms:

Structure of O³

Test for O³

When O_3 comes in contact with the moist starch iodide paper, then the paper turns blue due to the oxidation of I⁻ ions and I₂, which gives blue colour with starch.

5.5 COMPOUNDS OF OXYGEN FAMILY

5.5.1 HYDRIDES

Shape and structure

All these hydrides (H₂M type) have angular structure. The central atom in these hydrides shows $sp³$ hybridisation. Thus, there are two bond pairs and two lone pairs of electrons in the molecules of these hydrides. Due to stronger lone pair bond pair repulsions, the HMH angles in hydrides are less than the tetrahedral angle of 109° 28'. The bond angle in H_2M hydrides of group VIB elements decreases as we go from oxygen to tellurium in the group.

mart No

Thus, water has unusually high boiling point as compared to other hydrides of this group. The volatility of these hydrides follow the order

 $H_2O < H_2S > H_2Se > H_2Te$

The existence of hydrogen bonds between water molecules is mainly responsible for its abnormally high melting and boiling points, (or for its low volatility).

Thermal stability

The thermal stability of hydrides of group 16 elements decreases with the increase in the size of the central atom.

 $H_2O > H_2S > H_2Se > H_2Te$

Acidic nature

The hydrides of group VIB elements are weakly acidic. The acidic character of these hydrides increases with increasing atomic number. Thus, the acid strength of these hydrides increases as we move from O to Te because of the increase in the distance between central atom and hydrogen, which favour the release of hydrogen as proton.

Reducing character

All hydrides of group VIB elements except H_2O , are reducing agents. The reducing power of these hydrides increases in going from H_2S to H_2Te , which may be due to increase in the size of the central atom and hence decrease in the M−H bond energy.

Some physical properties of hydrides of group VIB elements

Sulphur forms halides of the type, S_2X_2 (X = F, Cl, Br, I), SX_2 (X = F, Cl, Br), SX_4 (X = F, Cl) and SF_6 . Selenium and tellurium form hexafluorides. Fluorides, chlorides and bromides of selenium and tellurium in the oxidation states of $+1$, $+2$ and $+4$ are also known. Formulae of known halides of group VIB elements are summarised in table.

Certain important features of halides of group VIB elements are described below.

(i) The stability and variety of halogen compounds formed by the elements of group

16 decreases with the increasing atomic number of the halogen, i.e., in the order

Fluoride > Chloride > Bromide > Iodide

This means, fluorides are the most stable, while iodides are the least stable of the halides of group VIB elements.

mart Notes

Sulphur, selenium and tellurium show maximum valency of six only in their fluorides. It is due to the small size and the most electronegative nature of fluorine atom.

The central atom in hexafluorides shows sp^3d^2 hybridisation. So, hexafluorides have octahedral structures.

(iii) The compounds of fluorine with oxygen are called oxygen fluorides. For example, the compound F_2O is actually written as $OF₂$ and is named as oxygen difluoride. This is because fluorine is more electronegative than oxygen.

The compounds of chlorine, bromine and iodine with oxygen are called halogen oxides, because oxygen is more electronegative than chlorine, bromine and iodine. For example, $ClO₂$ is named as chlorine dioxide, $Cl₂O₇$ is named as chlorine heptaoxide etc.

5.5.3 OXIDES

Normal oxides

These oxides contain only M−O bonds e.g., H2O, MgO and Al2O3. The oxidation number of M can be deduced from the empirical formula M*x*O^y taking the oxidation number of oxygen as −2.

Peroxides

These oxides contain more oxygen than would be expected from the oxidation number of M. Some are ionic and contain the peroxide anion O_2^{2-} , e.g., Na₂O₂ and BaO₂. Others are covalently bonded and

contain $-O-O-$ in the structure e.g., H_2O_2 , H_2SO_5 and $H_2S_2O_8$.

$$
H-O-O-H \t 2H^{+}\t 0-B-O-O \t 2H^{+}\t 0-B-O-O \t 3H^{+}\t 0-B-O-O \t 3H^{+}\t 0-B-O \t 3H^{+}\t 0-B-O \t 3H^{+}\t 0-H^{+}\t 3H^{+}\t 3H^{+}\
$$

Peroxymonosulphuric acid Peroxodisulphuric acid

Peroxo compounds are strong oxidising agents and are hydrolysed by water to give H_2O_2 .

 $H_2SO_5 + H_2O \longrightarrow H_2SO_4 + H_2O_2$

Superoxides e.g., $KO₂$, contain still more oxygen than would be expected. **Suboxides**

These contain less oxygen than would be expected from the oxidation number of M.

They involve M–M bonds in addition to M–O bonds, for example carbon suboxide (O=C=C=C=O). The oxides may also be classified as basic, acidic, amphoteric or neutral oxides depending on the

products formed when they react with water.

Basic oxides

Metallic oxides are generally basic. The oxides of more electropositive metals having high lattice energy are ionic in nature e.g., Na₂O, Mg_O, La₂O₃ etc. These oxides have high melting points and when they react with water O^{2−} ion is converted into OH[−] ion.

However many metal oxides with formulae M_2O_3 and MO_2 though ionic do not react with water e.g. $T₁₂O₃$, $B₁₂O₃$, ThO₂ etc. These oxides are also basic in nature because they react with acids to form salts. Where a metal can exist in more than one oxidation slate and thus form more than one oxide e.g., CrO, Cr_2O_3 , CrO_3 , PbO_2 , Sb_4O_6 and Sb_4O_{10} , the lowest oxidation state is the most ionic and the most basic. Thus, CrO is basic, Cr_2O_3 amphoteric and CrO_3 is acidic.

Amphoteric oxides

Many metals yield oxides, which are amphoteric and react with both strong acids and strong bases. This includes BeO, Al_2O_3 , Ga_2O_3 , SnO, PbO and ZnO.

 $Al_2O_3 + 6HCl \longrightarrow 2AlCl_3 + 3HO$ Al_2O_3 + 2NaOH \longrightarrow 2NaAlO₂ + H₂O $PbO + 2HNO₃ \longrightarrow Pb(NO₃)₂ + H₂O$ $PbO + 2NaOH \longrightarrow Na₂PbO₂ + H₂O$

Ī

Acidic oxides

Non−metal oxides are usually covalent compounds having low melting and boiling points. Many of them occur as discrete molecules e.g., CO_2 , NO, SO_2 , Cl_2O while some of them such as B_2O_3 and SiO_2 form infinite giant molecules having high melting points. They are all acidic. Many of them are anhydrides of acids.

$$
B_2O_3 + 3H_2O \longrightarrow 2H_3BO_3
$$

$$
P_4O_{10} + 6H_2O \longrightarrow 4H_3PO_4
$$

 N_2O_3 contains $N(+III)$ and N_2O_5 contains $N(+V)$. HNO₃ is a stronger acid than HNO₂. **Neutral oxides**

A few covalent oxides e.g., N2O, NO and CO have neither acidic nor basic properties.

5.5.4 OXIDES OF SULPHUR, SELENIUM, TELLURIUM AND

POLONIUM

Dioxides

SO² being a discrete molecule exist in the gaseous state.

Hybridisation of S in SO_2 in the gaseous state is sp^2 as shown in the figure. The double bond between sulphur and oxygen arises due to $p\pi$ –d π overlap.

Selenium and tellurium dioxides are solids having polymeric chain or layer structure. Structure of $SeO₂$ in the solid state is given in figure. It consists of a zig-zig chain. Hybridisation of Se in $SeO₂$ is $sp³$.

119.5° 143 pm O **:** S **: ..** O**:**

Structure of $SO₂$ in the gaseous state

..

 $TeO₂$ and $PoO₂$ are crystalline ionic solids.

Preparation of sulphur dioxide

(i) By roasting sulphides

 $4FeS_2 + 11O_2 \longrightarrow 2Fe_2O_3 + 8SO_2(g)$ iron pyrite (ii) By heating copper with concentrated $H₂SO₄$ $Cu(s) + 2H_2SO_4 (conc.) \longrightarrow$ CuSO₄ + 2H₂O + SO₂(g)

Properties of SO²

Bleaching Action: Sulphur dioxide in presence of water, acts as a strong bleaching agent. In the presence of water, it reduced the colour matter to colourless product. Thus, it is used for bleaching coloured matter to colourless product. Thus, it is used for bleaching coloured wool, silk, sponges and straw. The bleaching action of sulphur dioxide in the presence of water is due to its reducing properties.

$$
SO_2 + 2H_2O \longrightarrow H_2SO_4 + 2H
$$

nascent hydrogen

 $2H + X$ (coloured material) $\longrightarrow XH_2$ (colourless product)

Ī

When the colourless product is allowed to stand in the air, it is reoxidised by the atmospheric oxygen to its original colour. So, bleaching with sulphur dioxide is temporary.

Colourless vegetable product + $[0] \longrightarrow$ Coloured vegetable matter

from air

The bleaching action of chlorine, however, is due to its oxidising nature, and is permanent. **Trioxides**

All the group 16 elements form trioxides, MO3. Sulphur trioxide in the gas phase exists as planar

triangular molecular species, although in the solid state it can exist as a linear chain or a cyclic trimer. Selenium trioxide (SeO₃) solid is a cyclic tetramer (Se₄O₁₂) as shown in figure. TeO₃ is a solid with a network structure in which TeO_6 octahedra share all vertices. SO_2 and SO_3 are the most important oxides from industrial point of view.

Structures of some oxides of sulphur and selenium are shown in figure.

Structures of (a) gaseous SO_3 (b) cyclic trimer of $SO_3(s)$, (c) linear chain form of solid SO_3 , and (d) cyclic tetrameric form of $SeO_3(s)$

Preparation of sulphur trioxide

Sulphur trioxide is prepared by the following method.

From SO₂: Sulphur trioxide is usually prepared in the laboratory by heating a mixture of sulphur dioxide and oxygen to about 450° C over platinised asbestos.

$$
2SO_2(g) + O_2(g) \xrightarrow{\text{Pt or } V_2O_5 \text{ catalyst}} 2SO_3(g)
$$

5.5.5 OXOACIDS OF SULPHUR

The oxoacids of sulphur are more numerous and more important than those of Se and Te. Many of the oxoacids of sulphur do not exist as free acids, but are known as anions and salts. Acids ending in –ous have S in the oxidation state (+IV), and form salts ending in

–ite. Acids ending in –ic have S in the oxidation state $(+V)$ and form salts ending in –ate.

As discussed previously under bond lengths and $p\pi$ –d π bonding, the oxoanions have strong π bonds and so they have little tendency to polymerise compared with

the phosphates and silicates. To emphasize structural similarities the acids are listed in four series.

- 1. sulphurous acid series
- 2. sulphuric acid series
- 3. thionic acid series
- 4. peroxoacid series.
- **1. Sulphurous acid series**

 $H₂SO₃$ sulphurous acid

H2S2O⁵ di- or pyrosulphurous acid

 $H₂S₂O₄$ dithionous acid

2. Sulphuric acid series

Bond lengths and pπ–dπ bonding

The bonds between S and O, or Se and O, are much shorter than might be expected for a single bond. In some cases they may be formulated as localized double bonds. A σ bond is formed in the usual way. In addition a π bond is formed by the sideways overlap of a p−orbital on the oxygen with a d–orbital on the sulphur, giving a p π -d π interaction.

This p π –d π bonding is similar to that found in the oxides and oxoacids of phosphorous and is in contrast to the more common $p\pi$ - $p\pi$ type of double bond found in ethene.

pπ-dπ overlap

To obtain effective p π −d π overlap, the size of the d−orbital must be similar to the size of the p–orbital. Thus sulphur forms stronger π –bonds than the larger elements in the group. On crossing a period in the periodic table, the nuclear charge is increased and more

s and p−electrons are added. Since these s and p−electrons shield the nuclear charge incompletely, the size of the atom and the size of the d−orbitals decreases from Si to P to S to Cl. The decrease in the size of the 3d–orbitals in this series of elements leads to progressively stronger $p\pi$ –d π bonds. Thus, in the silicates there is hardly any p π −d π bonding. Thus, SiO₄ units polymerise into an enormous variety of

structures linked by Si–O–Si σ –bonds. In the phosphates, π –bonding is stronger, but a large number of polymeric phosphates exist. In the oxoacids of sulphur, π -bonding is even stronger and has become a dominant factor. Thus, only a small amount of polymerization occurs and only a few polymeric compounds are known with S–O–S linkages. For chlorine, $p\pi$ –d π bonding is so strong that no polymerization of oxoanions occurs.

In cases where there is more than one π bond in the molecule it may be more appropriate to explain the π bonding in terms of delocalized molecular orbitals covering several atoms.

Sulphuric acid, (H2SO4)

Manufacture of Sulphuric Acid by Contact Process

(i) Production of SO²

Sulphur dioxide $(SO₂)$ is obtained by burning sulphur or iron pyrites.

 S $O_2 \longrightarrow SO_2(g)$ sulphur $4FeS_2$ + $11O_2$ \longrightarrow $2Fe_2O_3$ + $8SO_2(g)$ iron pyrites +

(ii) Catalytic oxidation of SO² to SO³

Sulphur dioxide is oxidised by air in the presence of a catalyst to give sulphur trioxide.

$$
2SO_2(g) + O_2(g) \xrightarrow{\text{catalyst}} 2SO_3(g) \quad \Delta H = -196.6 \text{ kJ}
$$

- (a) Air or oxygen required for the oxidation of sulphur dioxide must be in excess.
- (b) The temperature must be low. A temperature between $350-450^{\circ}$ C gives the maximum yield of the product.
- (c) The pressure of about 2 atmospheres is used to carry out the above reaction.
- (d) Platinised asbestos was used as a catalyst previously, but now-a-days it is replaced by must cheaper vanadium pentoxide (V_2O_5) .
- (e) The gases used $(SO_2$ and O_2) must be free of impurities, viz., dust particles, arsenious oxide etc., to prevent catalyst poisoning.
- **(iii)** Conversion of sulphur trioxide into sulphuric acid. Sulphur trioxide is dissolved in concentrated sulphuric acid to produce oleum or fuming sulphuric acid.

 $SO_3(q)$ + H_2SO_4 \longrightarrow $H_2S_2O_7$ (conc.) oleum

(iv) Conversion of oleum to sulphuric acid

Oleum is diluted with a calculated amount of water to get sulphuric acid of desired concentration.

$H_2S_2O_7 + H_2O \longrightarrow 2H_2SO_4$

Chemical Properties of Sulphuric Acid

$$
H_2SO_4 \xrightarrow{\Delta} H_2O + SO_3(g)
$$

Reaction due to H⁺ :

 $NaOH + H₂SO₄ \longrightarrow NaHSO₄ + H₂O$ sodium hydrogen sulphate

Reaction due to sulphate ions:

$$
BaCl2(aq) + H2SO4(aq) \longrightarrow BaSO4(s) + 2HCl(aq)
$$

barium sulphate
(CH₃COO)₂ Pb(aq) + H₂SO₄(aq) \longrightarrow PbSO₄(s) + 2CH₃COOH(aq)

Lead sulphate

Affinity for water

Charring of sugar is another example of dehydration by sulphuric acid.

$$
C_{12}H_{22}O_{11} + H_2SO_4 \longrightarrow 12C + H_2SO_4. 11H_2O
$$

square
brown

$HCOOH + H₂SO₄ \longrightarrow CO + H₂SO₄$. H₂O formic acid $(COOH)_2 + H_2SO_4 \longrightarrow CO + CO_2 + H_2SO_4.H_2O$ oxalic acid

Oxidising property

Hot concentrated sulphuric acid gives nascent oxygen and, therefore, acts as an oxidising agent.

Structure of Sulphuric acid and Sulphate ion

THE GROUP – 17 ELEMENTS (HALOGEN FAMILY) 6

Fluorine (F), chlorine (Cl), Bromine (Br), Iodine (I) and astatine (\overline{At}) are grouped together to form group 17 of the periodic table. Their salts are present in seawater and hence they are also known as **halogens** (Halos, in Greek, means sea salt producers). The group collectively is called **halogen family**.

The general electronic configuration of halogens is $n s² np⁵$. They are just one electron short of stable electronic configuration of inert gas elements. They have a very strong tendency to acquire stable configuration by accepting one electron. For this reason they exhibit non−metallic behaviour. Astatine, the last member of this group is a radioactive element with very short half−life.

6.1 GENERAL TRENDS IN PHYSICAL PROPERTIES

Some of the properties, of the elements of this group are given in the following table:

(i) Melting and boiling points

Melting and boiling points increase with the increase in atomic number. The enthalpy of fusion as well as enthalpy of vaporisation also increases as we go down the group. This indicates that the strength of intermolecular forces of attraction between the molecules increases with increase in atomic number.

(ii) Atomic and ionic radii

Atomic radii of the elements of this group are the smallest in their respective periods. Both the atomic radii and ionic radii for the anion X⁻ increase, regularly down the group because the electrons are added to higher and higher shells.

(iii) Ionisation energies

Ionisation energies of the all the halogens are very high. Therefore, they have very little tendency to loose electron. However, this tendency increases down the group because the nuclear force of attraction on valence electrons decreases. Iodine is capable of forming stable compounds in which it exists as I⁺ ion.

(iv) Physical state

All the halogens are diatomic and exist as F_2 , Cl_2 , Br_2 and I_2 . The intermolecular forces are very weak and their magnitude increases down the group. Thus, F_2 , Cl_2 are gases, bromine is a volatile liquid and iodine is a volatile solid.

(v) Colour

Halogens are coloured. The colour of the halogen is due to absorption of certain wavelengths of visible light by their molecules resulting is the excitation of outer electron to higher energy orbitals. Fluorine being smaller in size absorbs shorter wavelengths corresponding to violet colour for excitation and appears pale yellow. Iodine on the other hand absorbs longer wavelengths corresponding to yellow colour for excitation and therefore appears violet. In between fluorine and iodine, the colour of chlorine is greenish yellow and of bromine is reddish brown. Thus, the colour deepens down the group.

(vi) Non−**metallic character**

All the halogens are non−metals because of their very high ionisation energies. The non–metallic character, however, decreases with the increase in atomic number. Iodine shows some of the distinct metallic properties, e.g., it possesses metallic lustre and forms positive ions like I^+ , I^{3+} etc.

(vii) Electron affinities

The halogens have strong tendency to accept electrons. Their electron affinities are highest in their respective periods. On moving down the group the electron affinity values generally decrease with the increase in size of the atom. The exception to this general rule is fluorine which has lower electron affinity than chlorine. It is due to the small size of fluorine atom, the incoming electron experiences repulsion due to existing electrons in the 2p subshell resulting in low value of electron affinity.

(viii) Oxidation states

The most common oxidation state of all the halogens is −1, as they attain stable configuration by accepting one electron. In fact this is the only oxidation state shown by fluorine because it is the most electronegative element known. Other elements of this group also show oxidation states of $+1$, $+3$, $+5$ and $+7$. Higher oxidation states of these elements are due to the presence of vacant and orbitals.

6.2 GENERAL TRENDS IN CHEMICAL PROPERTIES

All the halogens are very reactive and amongst them fluorine is the most reactive. As we move down the group, reactivity decreases. This is due to the decrease in electronegativity.

In general, a halogen of low atomic number oxidises halide ions of higher atomic number i.e., F_2 displaces Cl₂, Br₂ and I₂ from their salts, Cl₂ displaces Br₂ and I₂ whereas Br₂ displaces I₂ from its salts. $F_2 + 2X^- \longrightarrow 2F^ (X = Cl, Br, I)$ $Cl_2 + 2X^- \longrightarrow 2Cl^ (X = Br, I)$ $Br_2 + 2I^- \longrightarrow 2Br^- + I_2$ **6.3 FLUORINE (a) Preparation of Fluorine (i) Moisson's method** Materials for electrolytic bath: Alloy of Pt, Ir Electrodes : Pt−Ir electrodes Electrolyte: KHF_2 (1 part) + HF (5 part) Temp. of the bath : −23°C **Reaction at the electrode:** $KHF_2 \longrightarrow KF + HF$ $KF \longrightarrow K^+ + F^-$ At cathode: $K^+ + e \longrightarrow K$ At anode: $\overline{} \longrightarrow \overline{F} + e^ 2F \longrightarrow F_2 \uparrow$ **(ii) Dennis method** Electrolyte : KHF_2 Temperature : 240° − 250°C Electrolytic cell : 'V' shaped copper tube Electrode material : Graphite Current : 5 (Amps) Voltage : 12 volt **Reaction at the electrodes** $KHF_2 \longrightarrow KF + HF$ $KF \longrightarrow K^+ + F^-$ At cathode: $K^+ + e \longrightarrow K$ 2K + HF $\longrightarrow 2KF + H_2 \uparrow$ At anode : $2F - 2e \longrightarrow F_2$ **(b) Properties Physical properties** It is a pale greenish yellow gas having pungent odour and is highly poisonous. It is heavier than air. It is the most electronegative element (electronegativity 4.0) which condenses to yellow liquid at −188°C and yellow solid at −223°C. **Chemical properties** (i) It combines with most of the metals and non−metals to form fluorides. $2Ag + F_2 \longrightarrow 2AgF$ $2Al + 3F_2 \longrightarrow 2AlF_3$ However, Cu does not appreciably react with F_2 due to deposition of CuF₂ layer. Hydrogen reacts violently with F_2 even in the dark $H_2 + F_2 \longrightarrow H_2F_2$ Wood charcoal, phosphorus, arsenic, antimony, boron, silicon react with F_2 producing a flame. $C + 2F_2 \longrightarrow CF_4$; $Si + 2F_2 \longrightarrow SiF_4$ $P_4 + 6F_2 \longrightarrow 4PF_3$; $2B + 3F_3 \longrightarrow 2BF_3$ (ii) Fluorine reacts vigorously with H_2O giving O_2 and O_3 $2H_2O + 2F_2 \longrightarrow 4HF + O_2$ $3H_2O + 3F_2 \longrightarrow 6HF + O_3$ (iii) Fluorine reacts with dilute alkali to form oxygen difluoride (OF₂) and with concentrated alkali to form O_2 $2NaOH + 2F_2 \longrightarrow OF_2 + 2NaF + H_2O$ $4NaOH + 2F_2 \longrightarrow 4NaF + 2H_2O + O_2$

(iv) It acts as a strong oxidising agent when it oxidises chlorates to perchlorates, iodates to periodates, bisulphates to peroxysulphates.

 $KClO₃ + F₂ + H₂O \longrightarrow KClO₄ + H₂F₂$

$$
KIO_3 + F_2 + H_2O \longrightarrow KIO_4 + H_2F_2
$$

$$
2NaHSO4 + F2 \longrightarrow Na2S2O8 + H2F2
$$

- (iv) It attacks glass (SiO₂) at about 100 $^{\circ}$ C. However dry F₂ reacts slowly. $SiO_2 + 2F_2 \longrightarrow SiF_4 + O_2$
- (vi) It reacts with NH₃ to form N₂ and H₂S burns in an atmosphere of F₂ to form SF₆ $2NH_3 + 3F_2 \longrightarrow N_2 + 6HF$ $H_2S + 4F_2 \longrightarrow SF_6 + 2HF$

6.4 CHLORINE

(a) Preparation of chlorine

1. Starting material

Powdered MnO² (Manganese dioxide) and concentrated HCl

Reaction: $2MnO_2 + 8HCl \longrightarrow 2MnCl_3 + Cl_2 + 4H_2O$ $2MnCl_3 \longrightarrow 2MnCl_2 + Cl_2$ $2MnO_2 + 8HCl \longrightarrow 2MnCl_2 + 2Cl_2 + 4H_2O$ or, $MnO_2 + 4HCl \longrightarrow MnCl_2 + Cl_2 + 2H_2O$

Chlorine thus produced becomes moisture free by passing through concentrated H_2SO_4

2. $2NaCl + 3H_2SO_4 + MnO_2 \longrightarrow 2NaHSO_4 + MnSO_4 + 2H_2O + X_2 (X = Cl, Br, I)$

- **3.** K₂Cr₂O₇ + 14HCl \longrightarrow 2KCl + 2CrCl₃ + 3Cl₂ + 7H₂O
- **4.** $PbO_2 + 4HCl \longrightarrow PbCl_2 + Cl_2 + 2H_2O$
- **5.** $2KMnO_4 + 16HCl \longrightarrow 2KCl + 2MnCl_2 + 5Cl_2 + 8H_2O$ \sim

6. Ca
$$
Ca \xrightarrow{OCl} + 2HCl \longrightarrow CaCl_2 + Cl_2 + H_2O
$$

(b) Properties of Cl²

Physical properties : Greenish yellow gas having a choking and irritating smell, 2.5 times heavier than air, liquefied to a yellow liquid by compressing it at 15°C. Electronegativity is 3.0 (Pauling's scale). **Chemical properties**

(i) Arsenic catches fire in $Cl₂$ but P burns.

$$
2As + 3Cl2 \longrightarrow 2AsCl3
$$

$$
2Sb + 3Cl2 \longrightarrow 2SbCl3
$$

$$
2P + 3Cl_2 \longrightarrow 2PCl_3
$$

$$
2P + 5Cl_2 \longrightarrow 2PCl_5
$$

(ii) It reacts with water forming hydrochloric acid and hypochlorous acid. The chlorine water shows bleaching action due to oxidation by the nascent oxygen obtained by dissociation of hypochlorous acid.

 $Cl_2 + H_2O \longrightarrow HCl + HOCl$

$$
H O Cl \longrightarrow HCl + [O] \uparrow
$$

(iii) Cold and dilute solution of NaOH, KOH react with halogens Cl_2 , Br_2 , I_2 and producing hypohalites and halides. Concentrated, hot alkalies produce halides and halates with halogens Cl_2 , Br_2 and I_2 .

 $Cl_2 + 2NaOH \longrightarrow NaCl + NaOCl + H_2O$

sodium hypochlorite

$$
3Cl_2 + 6NaOH \longrightarrow 5NaCl + NaClO_3 + 3H_2O
$$

sodium chlorate

However, when chlorine is passed over dry slaked lime, bleaching powder is obtained

$$
Ca(OH)2 + Cl2 \longrightarrow Ca(OCl)Cl + H2O
$$

Ī

Bleaching powder

(iv) Oxidation reactions of chlorine are:

mart Notes

 $2CaO + 2Cl_2 \longrightarrow 2CaCl_2 + O_2 \uparrow$ $8NH_3 + 3Cl_2 \longrightarrow 6NH_4Cl + N_2$ (Excess) $NH_3 + 3Cl_2 \longrightarrow NCl_3 + 3HCl$ (Excess) $H_2S + Cl_2 \longrightarrow 2HCl + S$ Moist sulphur dioxide is oxidized to sulphuric acid $SO_2 + Cl_2 + 2H_2O \longrightarrow 2HCl + H_2SO_4$ $2K_2MnO_4 + Cl_2 \longrightarrow 2KMnO_4 + 2KCl$ $2K_4[Fe(CN)_6] + Cl_2 \longrightarrow 2K_3 [Fe(CN)_6] + 2KCl$ $2KBr + Cl_2 \longrightarrow 2KCl + Br_2$ $2KCIO_3 + I_2 \longrightarrow 2KIO_3 + Cl_2 \uparrow$ SO² bleaches by reduction as shown below: $2H_2O + SO_2 \longrightarrow H_2SO_4 + 2[H]$ This is the main difference in bleaching action between Cl_2 and SO_2 . Also bleaching by SO_2 is temporary but $Cl₂$ bleaches permanently. $Ca(OCl)Cl + H_2SO_4 \longrightarrow CaSO_4 + CaCl_2 + 2HOCl$ $HOC1 \longrightarrow HCl + [O] \uparrow$ $Ca(OCl) Cl + Na₃AsO₃ \longrightarrow Na₃AsO₄ + CaCl₂$ Ca(OCl) Cl + 2Fe $SO_4 + H_2SO_4 \longrightarrow Fe_2(SO_4)_3 + CaCl_2 + H_2O$ (v) Addition reactions of chlorine are: Chlorine reacts with SO2, CO and unsaturated hydrocarbons forming addition products $SO_2 + Cl_2 \longrightarrow SO_2Cl_2$ $CO + Cl₂ \longrightarrow COCl₂(carbonyl chloride)$ Phosgene $CH_2=CH_2 + Cl_2 \longrightarrow CH_2Cl-CH_2Cl$ **6.5 BROMINE (a) Preparation of Bromine** Starting raw materials are (i) KBr (ii) $MnO₂$ (iii) $H₂SO₄$ (concentrated) $2KBr + MnO₂ + 3H₂SO₄ \longrightarrow 2KHSO₄ + MnSO₄ + Br₂ \uparrow + 2H₂O$ This $Br₂$ is purified by distilling it over a mixture of KBr and ZnO. **(b) Properties of Br² Physical properties** It is a dark red, dense, heavy liquid at ordinary temperature, which boils at 59° C. And its vapours attack skin, eyes, nose and throat. **Chemical properties** Oxidising properties $Br_2 + H_2S \longrightarrow 2HBr + S$ $Na₂SO₃ + Br₂ + H₂O \longrightarrow Na₂SO₄ + HBr + H₂SO₄$ $2HI + Br_2 \longrightarrow 2HBr + I_2$ $6FeSO_4 + 3Br_2 \longrightarrow Fe_2(SO_4)_3 + 2FeBr_3$ $8NH_3 + 3Br_2 \longrightarrow 6NH_4Br + N_2$ $KNO_2 + Br_2 + H_2O \longrightarrow 2HBr + KNO_3$ Change of red colour of Br₂ taken place when C_2H_2 or C_2H_4 (unsaturated compounds) are reacted with $C_2H_4 + Br_2$ (red) $\longrightarrow C_2H_4Br_2$ (colourless) Reducing properties $Br_2 + 3F_2 \longrightarrow 2BrF_3$ $Br_2 + 5F_2 \longrightarrow 2BrF_5$ $Br_2 + Cl_2 \longrightarrow 2BrCl$

mart Not

6.6 IODINE

- **(a) Preparation of I²**
- **1. Starting materials :**
	- (i) KI (ii) $MnO₂$ (iii) concentrated $H₂SO₄$

Reaction: $(KI + H_2SO_4 \longrightarrow KHSO_4 + HI) \times 2$ $MnO_2 + H_2SO_4 \longrightarrow MnSO_4 + H_2O + O$ $2HI + O \longrightarrow H_2O + I_2$ $2KI + MnO₂ + 3H₂SO₄ \longrightarrow 2KHSO₄ + MnSO₄ + 2H₂O + I₂$ I² may be contaminated by ICl, IBr.

These are removed by KI by the following steps:

 $ICl + KI \longrightarrow KCl + I_2$

 $IBr + KI \longrightarrow KBr + I_2$

2. From chile saltpetre (caliche)

$$
2NaIO3 + 5NaHSO3 \longrightarrow 2Na2SO4 + 3NaHSO4 + H2O + I2
$$

(b) Properties of I²

Physical properties

It is a deep brown crystalline solid having specific gravity 4.9. It is almost insoluble in water but dissolves in non−aqueous solvents like chloroform and carbon tetrachloride.

However, it dissolves in an aqueous solution of potassium iodide because it reacts with

KI forming KI_3

Chemical properties

Iodine reacts with non−metals like phosphorus, arsenic and antimony forming their respective tri−iodides.

 $2P + 3I_2 \longrightarrow 2PI_3$ $2As + 3I_2 \longrightarrow 2AsI_3$ $2Sb + 3I_2 \longrightarrow 2SbI_3$

Burning of I_2 vapour takes place in the above reaction.

 $2Na_2S_2O_3 + I_2 \longrightarrow Na_2S_4O_6 + 2NaI$

Oxidising properties

 $KI + I_2 \longrightarrow KI_3$

```
H_2S + I_2 \longrightarrow 2HI + S \downarrow
```
Reducing properties

$$
I_2 + 10HNO_3 \longrightarrow 2HIO_3 + 10NO_2 + 4H_2O
$$

 $I_2 + Cl_2 \longrightarrow 2ICl$

$I_2 + 3Cl_2 \longrightarrow 2ICl_3$

6.7 OXIDIZING POWER OF HALOGENS

Electron affinity is the tendency of the atoms to gain electrons. This reaches a maximum at chlorine. Oxidation may be regarded as the removal of electrons, so that an oxidizing agent gains electrons. Thus, the halogens act as oxidizing agents. The strength of an oxidizing agent (that is, its oxidation potential) depends on several energy terms and is best represented by a Born−Haber type of energy cycle. The oxidation potential is the energy change between the element in its standard state and in its hydrated ions. Thus, for iodine the change is from $I_{2(solid)}$ to $I^-_{(hydrated)}$. Thus the oxidation potential is equal to the sum of the energy put in as the enthalpies of fusion, evaporation and dissociation, less the energy evolved as the electron affinity and free energy of hydration.

mart N

In a similar cycle the oxidation potential for bromine can be calculated for the change from $\frac{1}{2}$ 1
 $\frac{1}{6}$ Br_{2(liquid)} to

Br[−](hydrated). (Note that since in its standard state bromine is liquid, the free energy of fusion must be omitted. Similarly in calculating the oxidation potential for chlorine and fluorine, since they are gases, both the free energies of fusion and evaporation must be omitted).

Though the electron affinity of chlorine is the highest, it is not the strongest oxidizing agent. When all the terms in the energy cycle are summed, fluorine has the most negative ΔG° value, so fluorine is the strongest oxidizing agent. There are two main reasons for this:

1. F² has a low enthalpy of dissociation (arising from the weakness of the F−F bond).

2. F_2 has a high free energy of hydration (arising from the smaller size of the F^- ion).

Fluorine is a very strong oxidizing agent and it will replace Cl[−] both in solution and also when dry. Similarly, chlorine gas will displace Br[−] from solution. (This is the basis of the commercial extraction of bromine from sea water.) In general any halogen of low atomic number will oxidize halide ions of higher atomic number.

Iodine can replace Cl from KClO₃ because in $ClO₃$, Cl is in +7 oxidation state. Being strong electronegative element Cl cannot hold $+7$ oxidation state. Iodine being less electronegative it can hold the +7 charge very easily.

6.8 HALOGEN ACIDS

6.8.1 ACIDIC STRENGTH

It is at first paradoxical that HF is the weakest acid in water, since HF has a greater electronegativity difference than the other hydrides and therefore ahs more ionic character. However, acidic strength is the tendency of hydrated molecules to form hydrogen ions:

$$
HX_{\text{(hydrated)}} \longrightarrow H_{\text{(hydrated)}}^{+} + X_{\text{(hydrated)}}^{-}
$$

This may be represented in stages: dissociation, ionisation and hydration in an energy cycle.

The acid strength is equal to the sum of all the energy terms round the energy cycle in given above figure. Acid strength $=$ Free energy of dehydration

- + Free energy of dissociation
- $+$ Ionisation energy of H^+
- + Electron affinity X⁻
- + Free energy of hydration of H⁺ and X⁻

The factors, which make HF the weakest halogen acid in water, become apparent if the various thermodynamic terms are examined in more detail. The dissociation constant k for the change

 $HX_{(hydrated)} \iff H^+_{(hydrated)} + X^-_{(hydrated)}$

is given by the equation:

 $AG^{\circ} = -RT \ln k$

(where ΔG° is the Gibbs standard free energy, R the gas constant and T is absolute temperature). However, ΔG depends on the change in enthalpy ΔH and the change in entropy ΔS

 $\Delta G = \Delta H - T \Delta S$

Consider first the total enthalpy change ΔH for the dissociation of $HX_{(hydrated)}$ into $H^+_{(hydrated)}$ and

 $X_{(hydrated)}^-$. The ΔH values for the various halogen acids are all negative, which means that energy, is

evolved in the process, so the change is thermodynamically possible. However, the value for HF is small compared with the values for HCl, HBr and HI (which are all similar in magnitude). Thus, HF is only slightly exothermic in aqueous solution whereas the other evolve a considerable amount of heat.

mart No

The low total ΔH value for HF is the result of several factors.

- 1. The enthalpies of dissociation show that the H−F bond is much stronger than the H−Cl, H−Br or H−I bonds. Thus, the dissociation energy of HF is nearly twice that required to dissociate HI. (The strength of the HF bond is also shown by the short bond length of 1.0 Å compared with 1.7 Å in HI.
- 2. The heat of dehydration for the step $HX_{(hydrad)} \longrightarrow \frac{HX_{(gas)}}{A}$ is much higher for HF than for the others. This is because of the strong hydrogen bonding which occurs in aqueous HF solutions.
- 3. The unexpectedly low value for the electron affinity of F[−] also contributes and though the enthalpy of hydration of F[−] is very high, it is not enough to offset these other terms.

6.8.2 HYDROFLUORIC ACID (HF)

Chemical Properties:

 $CaF_2 + H_2SO_4 \longrightarrow CaSO_4 + 2HF \uparrow$

HF etches glass. The reaction is

 $SiF_4 + 2HF \longrightarrow H_2SiF_6$

Hence HF is stored in polythene coated bottle.

 $HF \rightleftharpoons H^+ + F^-$

 F^- + HF \rightleftharpoons HF₂⁻

Conjugate base F[−] bonds with HF by H−bonding thus statistically the effective number of molecules of H drops and registers acidity $K_a = 7.2 \times 10^{-4}$.

> $H_2F_2 + KOH \longrightarrow KHF_2 + H_2O$ $H_3BO_3 + 4HF \longrightarrow HBF_4 + 3H_2O$ $SiF_4 + 2HF \longrightarrow H_2SiF_6$ $BF_3 + HF \longrightarrow HBF_4$ $BaCl₂ + 2HF \longrightarrow BaF₂ + 2HCl$

6.8.3 HYDROCHLORIC ACID

Preparation of HCl

Starting materials: NaCl, concentrated H_2SO_4 ; temperature ; 150 °C

Reactions: $NaCl + H_2SO_4 \longrightarrow NaHSO_4 + HCl \uparrow$

 $NaCl + NaHSO₄ \longrightarrow Na₂SO₄ + HCl$

Purification of HCl is done by conc. H_2SO_4 not by CaO or P_2O_5 because both of

them react with HCl.

Properties

Physical properties: Colourless gas with pungent smell. It is heavier than air, highly soluble in water. **Chemical properties**

 $MnO₂ + 4HCl \longrightarrow MnCl₂ + Cl₂ \uparrow + 2H₂O$ $PbO₂ + 4HCl \longrightarrow PbCl₂ + Cl₂T + 2H₂O$ $K_2Cr_2O_7 + 14HCl$ ordinary test \rightarrow 2KCl + 2CrCl₃ + 3Cl₂ + 7H₂O $2KMnO₄ + 16HCl$ ordinary test \rightarrow 2KCl + 2MnCl₂ + 5Cl₂ + H₂O $AgNO₃ + HCl \longrightarrow AgCl\downarrow + HNO₃$ curdy white $Hg_2(NO_3)_2 + 2HCl \longrightarrow Hg_2Cl_2 + 2HNO_3$ curdy white **6.8.4 HYDROBROMIC ACID Preparation of HBr :** (Red) 2P + 3Br₂ \longrightarrow 2PBr₃ $PBr_3 + H_2O \longrightarrow HBr + H_3PO_3$ Reaction of NaBr with H_2SO_4 does not give HBr because of the following reaction: $NaBr + H_2SO_4 \longrightarrow NaHSO_4 + HBr$ $H_2SO_4 \longrightarrow H_2O + SO_2 + O$ $2HBr + O \longrightarrow H_2O + Br_2 \uparrow$ Purification of HBr is done by $CaCl₂$ from moisture. **Properties:**

mart Notes

HBr is colourless and having pungent odour shows the following reactions $Zn + 2HBr \longrightarrow ZnBr_2 + H_2\uparrow$ $Na_2CO_3 + 2HBr \longrightarrow 2NaBr + CO_2 + H_2O$ $NaHCO₃ + HBr \longrightarrow NaBr + CO₂ + H₂O$ **Reducing action:** $16HBr + 2KMnO₄ \longrightarrow 2KBr + 2MnBr₂ + 5Br₂ + 8H₂O$ $2HBr + H_2SO_4 \longrightarrow Br_2 + SO_2 + 2H_2O$ $K_2Cr_2O_7 + 14HBr \longrightarrow 2KBr + 2CrBr_3 + 3Br_2 + 7H_2O$ $HBr + O_2 \longrightarrow Br_2 \uparrow + H_2O$ **6.8.5 HYDROIODIC ACID Preparation of HI:** 1. (Red) $2P + 3I_2 + 6H_2O \longrightarrow 6HI + 2H_3PO_3$ 2. $\text{NaI} + \text{H}_2\text{SO}_4 \longrightarrow \text{NaHSO}_4 + \text{HI}$ $2HI + H_2SO_4 \longrightarrow I_2 \uparrow + SO_2 + 2H_2O$ 3. $SO_2 + 2H_2O + I_2 \longrightarrow H_2SO_4 + 2HI$ $H_2SO_4 + Bal_2 \longrightarrow BaSO_4 + 2HI$ **Chemical properties:** $4HI + O_2 \longrightarrow 2H_2O + I_2$ **Reducing properties:** 1. $2KMnO_4\hat{T} + 3H_2SO_4 + 10HI \longrightarrow K_2SO_4 + 2MnSO_4 + 5I_2 + 8H_2O$ Pink colourless 2. $K_2Cr_2O_7 + 6HI + 4H_2SO_4 \longrightarrow K_2SO_4 + Cr_2(SO_4)_3 + 3I_2 + 7H_2O$ 3. $H_2O_2 + 2HI \longrightarrow 2H_2O + I_2$ 4. $2HNO_3 + 2HI \longrightarrow I_2 + H_2 + 2H_2O + 2NO_2$ 5. $2FeCl_3 + 2HI \longrightarrow 2FeCl_2 + 2HCl + I_2$ 6. $2CuSO_4 + 4HI \longrightarrow Cu_2I_2 + 2H_2SO_4 + I_2$ 7. Pb(CH_3COO)₂ + 2HI \longrightarrow PbI₂ \downarrow + 2CH₃COOH

Reaction with KI in acid medium gives the detection test I⁻.

 $2KI + 2H_2SO_4 \longrightarrow K_2SO_4 + SO_2 + I_2 + 2H_2O$

Reducing Property of hydrogen halides

The stability of hydrogen halides decreases as we move down the group. The reducing property is in the order HF < HCl < HBr < HI. The ease of oxidation of halide ion is expected to increase in the order of increasing size of the halide ions F[−], Cl[−], Br[−] and I[−]. The electron to be removed from F[−] is very near to nucleus and therefore it is most difficult to remove and easy for I[−]. Therefore, HI should be strong reducing agent.

6.9 STRENGTH OF THE OXOACIDS

HClO⁴ is an extremely strong acid, whilst HOCl is very weak acid. The dissociation of an oxoacids involves two energy terms:

- 1. Breaking an O−H bond to produce a hydrogen ion and an anion.
- 2. Hydrating both ions

Plainly the ClO_4^- ion is larger than the OCl⁻ ion, so the hydration energy of ClO_4^- is less than that of OCl[−]. This would suggest that HOCl should ionise more readily than HClO₄. Since, we know the reverse to be true, the reason must be the energy required to break the O−H bond.

Oxygen is more electronegative than chlorine. In the series of oxoacids HOCl, HClO₂, HClO₃, HClO₄, an increasing number of oxygen atoms are bonded to the chlorine atom. The more oxygen atoms that are bonded, the more the electrons will be pulled away from the O−H bond and the more this bond will be weakened. Thus, HClO₄ requires the least energy to break the O–H bond and form H⁺. Hence, HClO₄ is the strongest acid. In general, for any series of oxoacids, the acid with the most oxygen (that is the one with the highest oxidation number) is the most dissociated. Thus, the acid strengths decreases in the order $HClO₄ > HClO₃ > HClO₂ > HOCl.$ In exactly the same way, $H₂SO₄$ is a stronger acid than $H₂SO₃$ and

 $HNO₃$ is a stronger acid than $HNO₂$.

6.10 PSEUDOHALOGENS AND PSEUDOHALIDES

A few ions are known, consisting of two or more atoms of which at least one is N, that have properties similar to those of the halide ions. They are therefore called pseudohalide ions. Pseudohalide ions are univalent, and these form salts resembling the halide salts. For example, the sodium salts are soluble in water, but the silver salts are insoluble. The hydrogen compounds are acids like the halogen acids HX. Some of the pseudohalide ions combine to form dimmers comparable with the halogen molecules X_2 . These include cyanogens $(CN)_2$, thiocyanogen $(SCN)_2$ and selenocyanogen $(ScN)_2$.

The best known pseudohalide is CN^{-1} . This resembles Cl^{-1} , Br⁻ and I⁻ in the following respects.

- 1. It forms an acid HCN.
- 2. It can be oxidized to form a molecule cyanogen $(CN)_2$.
- 3. It forms insoluble salts with Ag^+ , Pb^{2+} and Hg⁺.
- 4. Interpseudohalogen compounds CICN, BrCN and ICN can be formed.
- 5. AgCN is insoluble in water but soluble in ammonia, as is AgCl.
- 6. It forms a large number of complexes similar to halide complexes, e.g. $[Cu(CN)₄]$ ²⁻ and $[CuCl₄]$ ²⁻ and $[Co(CN)₆]$ ³⁻ and $[CoCl₆]$ ³⁻

6.11 INTERHALOGEN COMPOUNDS

We know that halogen atoms have different electronegativity. Due to this difference in electronegativity the halogen atoms combine with each other and give rise to the formation of binary covalent compounds, which are called interhalogen compounds. These compounds are of four types: (i) AB type (+1), e.g. CIF, BrF, IF (detected spectroscopically), BrCl, ICl, IBr (ii) AB_3 type (+3), e.g. CIF₃, BrF₃, IF₃, ICl₃ (iii) AB_5 type (+5), e.g. CIF₅, BrF₅, IF₅ (iv) AB₇ type (+7), e.g. IF₇. The number given in the bracket indicates the oxidation number of A atom. A halogen atom is larger than B halogen atom, i.e. A atom is less electronegative than B atom. In interhalogen compounds, the halogen atoms having less electronegativity show positive oxidation state. It is for this reason that interhalogen compounds are named as the halides of less electronegative halogen atom. Thus CIF is called chlorine monofluoride and not fluorine monochloride, since the electronegativity of Cl atom is less than that of F atom.

Halogen atom A acts as the central atom with which odd number of B atoms are covalently bonded. The central atom A may be Cl, Br or I but never F, since F atom seldom achieves a positive oxidation state and also it can not expand its coordination number beyond 4.

With the exception of BrCl, ICl, IBr and ICl₃ all the remaining interhalogen compounds are halogen fluorides. Greater is the electronegativity difference, $(x_F - x_A)$ (A may be I or Br), greater is the number of fluorides given by atom A. For example iodine $(x_F - x_I = 4.0 - 2.5 = 1.5)$ gives four fluorides viz. IF, IF₃, IF₅, and IF₇ while Br atom ($x_F - x_{Br} = 4.0 - 2.8 = 1.2$) gives only three fluorides namely BrF, BrF₃ and BrF₅. The formation of three fluorides by Cl-atom ($x_F - x_C = 4.0 - 3.0 = 1.0$) is taken to be an exception. Actually Cl-atom should give less than three fluorides.

It has not been possible to prepare the inter-halogen compounds containing more than two halogen atoms (ternary inter-halogen compounds). The non-formation of ternary interhalogen compounds is due to the fact that these compounds so formed get decomposed into a mixture of stable binary interhalogen compounds and/or elemental halogens. Polyhalides such as MIBrF, MIClBr, MIFCl³ etc, which contain three different halogen atoms have, how ever, been prepared.

General Methods of preparation

Following are the important general methods by which interhalogen compounds can be prepared.

SMARTLEARN COACHING

(i) By the direct combination of halogens

All the interhalogens, except $IF₇$, can be prepared by the direct combination of

the halogens under appropriate conditions. The following examples are noteworthy. For the preparation of AB₃ and AB₅ interhalogen compounds excess of halogen atom must be used in the reaction mixture.

 $Cl_2 + F_2$ (equal volumes) $\xrightarrow{250^\circ}$ 2ClF $Cl_2 + 3F_2$ (excess) \longrightarrow 250° \rightarrow 2ClF₃ $I_2 + Cl_2$ (liquid) (in equimolecular amount) \rightarrow 2ICl $I_2 + 3Cl_2$ (liquid and in excess) \longrightarrow 2ICl₃ Br₂ (vapour) + 3F₂ (diluted with N_2) \longrightarrow 2BrF₃ $I_2 + 3F_2$ (in freon) $\frac{-78^{\circ}\text{C}}{21F_3}$ $Br_2 + 5F_2$ (excess) \longrightarrow 2BrF₅

(ii) From lower interhalogens

Higher interhalogens can be prepared by the interaction of lower interhalogens with halogens. This method is particularly used for the preparation of halogen fluorides. The following examples illustrate the method.

$$
\text{CIF} + \text{F}_2 \longrightarrow \text{CIF}_3
$$
\n
$$
\text{CIF}_3 + \text{F}_2 \text{ (excess)} \xrightarrow{350^\circ} \text{CIF}_5
$$
\n
$$
\text{BrF}_3 + \text{F}_2 \text{ (excess)} \xrightarrow{200^\circ} \text{BrF}_5
$$
\n
$$
\text{IF}_5 + \text{F}_2 \xrightarrow{270^\circ} \text{IF}_7
$$

(iii) Miscellaneous methods

Some miscellaneous methods have been illustrated by the following examples.

 $6HCl + KIO_3 + 2KI \longrightarrow 2KCl + 3H_2O + 3ICI$ $Cl_2 + ClF_3 \xrightarrow{250-350^\circ} 3ClF$ $KCl + 3F_2 \xrightarrow{200^\circ} KF + ClF_5$ $3I_2 + 5AgF \longrightarrow 5AgI + IF_5$ $8F_2 + PbI_2 \longrightarrow PbF_2 + 2IF_7$

General Properties

(i) Physical state

The interhalogen compounds may be covalent gases (e.g. CIF, BrF, CIF₃, IF₇), liquids

(e.g. BrF_3 , BrF_5) or solids (e.g. ICl, IBr, IF₃, ICl₃).

(ii) Colour

Although many of the interhalogen compounds containing fluorine are colourless, yet those made up of heavier halogens are coloured. The colour becomes deeper with the increase of the molecular weight of the compound. In this behaviour these compounds resemble the halogens themselves.

(iii) Dimagnetic nature

Since all the valence electrons in interhalogen compounds are present as bonding or non-bonding (i.e., lone pairs) electron pairs, these compounds are diamagnetic in nature.

(iv) Heats of formation

All these compounds have low heats of formation. For example, these values for IBr and BrCl are –2.5 and –0.34 kcal/mole respectively. These are extremely volatile compounds. In general compounds containing fluorine are more volatile than those containing chlorine, bromine or iodine.

(v) Boiling points

For each type of interhalogen compounds, the boiling points increase with the increase in the electronegativity difference between *A* and *B* atoms.

(vi) Thermal stability

Thermal stability of AB type interhalogen compounds decreases with the decrease in electronegativity difference between A and B atoms. Thus the order of stability of some AB compounds is as

IF $(=1.5)$ > BrF (1.2) > CIF (1.0) > ICI (0.5) > IBr (0.3) > BrCl (0.2)

Ī In parentheses are given the electronegativity difference between A and B atoms. The above order is also explained by saying that greater is the difference between the electronegativity

values of A and B, the more polar is the A–B bond and hence greater is the thermal stability of AB compound.

(vii) Reactivity

AB type compounds are more reactive than A_2 and B_2 molecules, since A –B bond in AB compounds is weaker than $A-A$ and $B-B$ bonds in A_2 and B_2 molecules respectively. Thus AB type compounds convert the metals into a mixture of two halides. For example

 $ICl + 2Na \longrightarrow NaI + NaCl$

The order of reactivity of some interhalogen compounds has been found as $CIF_3 > BF_3 > IF_7 > BF_5 >$ BrF.

(viii) Hydrolysis

Hydrolysis gives halogen acid and oxy-halogen acid. The oxy-halogen acid is of larger (i.e., central) halogen atom. Examples are

 $BrCl + H₂O \longrightarrow HCl$ (halogen acid) + HOBr (oxy-halogen acid)

ICl $+ H_2O \longrightarrow HCl + HIO$

 $ICl₃ + 2H₂O \longrightarrow 3HCl + HIO₂$

 IF_5 + 3H₂O \longrightarrow 5HF + HIO₃

 $BrF_5 + 3H_2O \longrightarrow 5HF + HBrO_3$

 IF_7 + 6H₂O \longrightarrow 7HF + H₅IO₆

It may be noted that the oxidation state of A atom does not change during hydrolysis.

(ix) Reaction with non-metallic and metallic oxides

Non–metallic and metallic oxides are fluorinated by halogen fluorides to give the corresponding fluorides.

 $4BrF₃ + 3SiO₂ \longrightarrow 3SiF₄ + 2Br₂ + 3O₂$ $4BrF₃ + 2WO₃ \longrightarrow 2WF₆ + 2Br₂ + 3O₂$

(x) Addition reactions

The diatomic interhalogens (AB type compounds) add at olefinic double bond sites.

 $-CH = CH - + IC1 \longrightarrow - CHI - CHCl -$

 $CH_2 = CH_2 + BrCl \longrightarrow CH_2Br-CH_2Cl$

(xi) Reaction with alkali metal halides:

Reaction with alkali metal halides gives polyhalides like $NaIBr₂$, $CsIBrCl$, $KICl₄$ etc.

 $IBr + NaBr \longrightarrow NaIBr_2$; $ICl + KCl \longrightarrow KlCl_2$

 $BrCl + CsI \longrightarrow CsIBrCl$; $ICl_3 + KCl \longrightarrow KICl_4$

The molecular structures of interhalogen compounds are very interesting and can be explained on the basis of VSEPR theory. The structure of some of these compounds are shown below.

Structures of some interhalogen compounds

6.12 BLEACHING POWDER (CaOCl2.H2O)

Bleaching powder is also called calcium chlorohypochlorite because it is considered as a mixed salt of hydrochloric acid and hypochlorous acid.

$$
\mathsf{Ca} \left\{\begin{matrix}\n\mathsf{Cl} \\
\mathsf{OCl}\n\end{matrix}\right.
$$

Preparation:

 $Ca(OH)_2 + Cl_2 \xrightarrow{40^{\circ}C} Ca(OCl)Cl + H_2O$

Properties

- (a) It is a pale yellow powder. It has a strong smell of chlorine. It is soluble in water but a clear solution is never formed due to the presence of impurities.
- (b) On long standing, it undergoes auto−oxidation into calcium chlorate and calcium chloride. $6CaOCl₂ \longrightarrow Ca(ClO₃)₂ + 5CaCl₂$
- (c) $2CaOCl_2 \xrightarrow{CoCl_2} 2CaCl_2 + O_2$
- (d) In presence of a slight amount of a dilute acid, it loses oxygen.

 $2CaOCl_2 + H_2SO_4 \longrightarrow CaCl_2 + CaSO_4 + 2HClO$ $HClO \longrightarrow HCl + O$

On account of the formation of nascent oxygen, it shows oxidising and bleaching properties.

(i) Oxidising properties

 $CaOCl₂ + H₂S \longrightarrow CaCl₂ + H₂O + S$ $CaOCl₂ + 2FeSO₄ + H₂SO₄ \longrightarrow Fe₂(SO₄)₃ + CaCl₂ + H₂O$ $CaOCl₂ + KNO₂ \longrightarrow CaCl₂ + KNO₃$ $3CaOCl₂ + 2NH₃ \longrightarrow 3CaCl₂ + 3H₂O + N₂$ $CaOCl_2 + 2KI + 2HCl \longrightarrow CaCl_2 + 2KCl + H_2O + I_2$ $Na₂AsO₃ + CaOCl₂ \longrightarrow CaCl₂ + Na₃AsO₄$

(ii) Bleaching action

Coloured matter $+[O] \longrightarrow$ colourless product.

(e) It loses its chlorine by the action of dilute acids (in excess) or $CO₂$.

 $CaOCl₂ + 2HCl \longrightarrow CaCl₂ + H₂O + Cl₂$

 $CaOCl₂ + H₂SO₄ \longrightarrow CaSO₄ + H₂O + Cl₂$

```
CaOCl<sub>2</sub> + CO<sub>2</sub> \longrightarrow CaCO<sub>3</sub> + Cl<sub>2</sub>
```
The amount of chlorine obtained from a sample of bleaching powder by treatment with excess of dilute acids or CO² is called available chlorine. A good sample of bleaching powder contains 35−38% of available chlorine.

(f) Bleaching powder converts acetone or ethyl alcohol into CHCl³

 $CaOCl₂ + H₂O \longrightarrow Ca(OH)₂ + Cl₂$ $CH_3COCH_3 + 3Cl_2 \longrightarrow CCl_3COCH_3 + 3HCl$ $2CCl_3COCH_3 + Ca(OH)_2 \longrightarrow (CH_3COO)_2Ca + 2CHCl_3$

THE GROUP – 18 ELEMENTS 7

The elements helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe) and radon (Rn) belong to group 18 of the periodic table. All these elements are gaseous under ordinary conditions of temperature and pressure. The last member of the group i.e. radon is obtained from radioactive disintegration of radium. All others are present in air in traces. They are also known as *rare gases* because they are found in very small amounts in nature. They are highly non−reactive and baring few exceptions, they don't take part in chemical reactions and are therefore, called *inert gases* or *noble gases*. They always occur in free state because of the inert nature.

The valence shell electronic configuration of helium is $1s^2$ and for other members of this group is ns²np⁶. Thus, except helium, other noble gases have a closed octet of electrons in their outermost shell. This electronic configuration is very stable and is related to their chemical inertness.

Their physical properties show a regular gradation. Some of the physical properties are given in the following table:

Smart Notes

7.1 GENERAL TRENDS IN PHYSICAL PROPERTIES

(i) State

All of them are mono atomic, colourless, odourless and tasteless gases.

(ii) Solubility

They are sparingly soluble in water. The solubility generally increases with increase in atomic number.

(iii) Boiling point and melting point

Due to weak intermolecular vander Waal's forces between them they possess very low boiling point and melting point in comparison to those of other substances of comparable atomic and molecular masses. However, the boiling point and melting point increase with increase in atomic number because vander Waal's forces become stronger with increase in size of the atoms or molecules. Therefore, among noble gases radon has the highest melting point and boiling point whereas helium has the least melting point and boiling point.

(iv) Liquefication

It is extremely difficult to liquefy these gases as there are only weak vander Waal's forces which hold atoms together. Since these forces increase with the increase in atomic size and population of electrons, ease of liquefication increases down the group from He to Rn.

(v) Atomic radii

It the case of noble gases, the atomic radii corresponds to vander Waal's radii. Therefore, these are quite large as compared with atomic radii of the other atoms belonging to the same period. As we go down the group, the vander Waal's radius increases due to the addition of new electronic shells and increase in screening effect.

(vi) Ionisation energies

The ionisation energies of noble gases are very high. This is due to the stable configurations of noble gases. However, the ionisation energies decrease with increase in atomic number from He to Rn due to increasing atomic size and decrease in effective nuclear charge.

(vii) Electron affinities

Due to the stable ns²np⁶ electronic configurations, noble gas atoms have no tendency to accept additional electron. Therefore, their electron affinities are almost zero.

(viii) Enthalpy of fusion and enthalpy of vapourization

In general, the enthalpies of fusion and the enthalpies of vaporization are low and increase down the group.

7.2 CHEMICAL PROPERTIES

The noble gases are generally inert and do not participate in chemical reactions due to

- (i) very low electron affinities,
- (ii) exceptionally high ionisation energies and
- (iii)stable electronic configuration.

Smart Notes

Prior to 1962, it was thought that the noble gases do not combine at all with other elements. However, in 1962 N. Barttlet used the highly oxidising compound PtF_6 to oxidise O_2 .

$$
O_2\;+\;PtF_6\;\;\longrightarrow\;\quad O_2^+[PtF_6^-]
$$

Moreover, the first ionisation energy for $O_2 \longrightarrow O_2^+$ is 1165 kJ mol⁻¹ which is almost the same as the value of 1170 kJ mol⁻¹ for Xe $\longrightarrow Xe^+$. It was predicted that xenon should react with PtF₆ in an analogous manner. Experiments revealed that when deep red PtF_6 vapour was mixed with equal volume of xenon, the gases combined immediately at room temperature to produce a yellow solid. Initially the yellow solid was wrongly formulated

as $Xe^+PtF_6^-$. Subsequently, it was found that the reaction is more complicated and the product was actually $[XeF]^+$ $[Pt_2F_{11}]^-$.

 $Xe + 2PtF_6 \longrightarrow [XeF]^+ [Pt_2F_{11}]^-$

Once the reactivity of xenon was established, many more attempts were made to synthesize other compounds of noble gases. Now, many compounds of xenon and krypton are known with the fluorine and oxygen. The compounds of krypton are fewer, only the difluoride, $KrF₂$, has been synthesised. Compounds of He, Ne and Ar are not known. However, compounds of radon have been identified by radiotracer techniques but not isolated so far.

7.3 COMPOUNDS OF XENON: FLUORIDES, OXIDES AND OXOFLUORIDES

Xenon reacts directly only with F_2 forming three fluorides namely, XeF_2 , XeF_4 and XeF_6 . These can be obtained by the direct combination of xenon and fluorine at 400°C in a sealed nickel vessel and the products depend on the Xe/F_2 molar ratio.

$$
Xe + F_2 \xrightarrow[400^{\circ}C]{\text{Nitube}} XeF_2
$$
\n
$$
(2 : 1)
$$
\n
$$
Xe + 2F_2 \xrightarrow[5-6 \text{ atm}]{\text{Nitube}, 400^{\circ}C} XeF_4
$$
\n
$$
(1 : 5)
$$
\n
$$
Xe + 3F_2 \xrightarrow[50-60 \text{ atm}]{\text{Nitube}, 400^{\circ}C} XeF_6
$$
\n
$$
(1 : 20)
$$

The compounds
$$
XeF_2
$$
, XeF_4 and XeF_6 are all white solids, which sublime at room temperature. The lower fluorides form higher fluorides when heated with F_2 under pressure. They are extremely strong oxidising and fluorinating agents.

(i) They react quantitatively with hydrogen as follows

 $XeF_2 + H_2 \longrightarrow 2HF + Xe$

$$
XeF_4 + 2H_2 \longrightarrow 4HF + Xe
$$

(ii) They oxidize Cl⁻ to Cl₂, I⁻ to I₂ and cerium(III) to cerium(IV)

 $XeF_2 + 2HCl \longrightarrow 2HF + Xe + Cl_2$ $XeF_4 + 4KI \longrightarrow 4KF + Xe + 2I_2$ SO_4^{2-} + $XeF_2 + Ce_{2}^{III}(SO_4)_{3} \longrightarrow 2Ce^{IV}(SO_4)_{2} + Xe + F_2$

(iii)They fluorinate compounds:

 $XeF_4 + 2SF_4 \longrightarrow Xe + 2SF_6$

$$
XeF_4 + Pt \longrightarrow Xe + PtF_4
$$

(iv) The fluorides differ in their reactivity with water. XeF_2 in soluble in water, but undergoes slow hydrolysis. Hydrolysis is more rapid with alkali.

 $2XeF_2 + 2H_2O \longrightarrow 2Xe + 4HF + O_2$

 XeF_4 reacts violently with water, giving xenon trioxide XeO_3 .

 $3XeF_4 + 6H_2O \longrightarrow 2Xe + XeO_3 + 12HF + 1\frac{1}{2}O_2$

 $XeF₆$ also reacts violently with water, but slow hydrolysis by atmospheric moisture gives the highly explosive solid $XeO₃$.

 $XeF_6 + 6H_2O \longrightarrow XeO_3 + 6HF$

With small quantities of water, partial hydrolysis occurs, giving a colourless liquid xenon oxofluoride $XeOF₄$. The same product is formed when $XeF₆$ reacts with silica or glass:

 $XeF_6 + H_2O \longrightarrow XeOF_4 + 2HF$

 $2XeF_6 + SiO_2 \longrightarrow 2XeOF_4 + SiF_4$

(v) $XeO₃$ is an explosive white hygroscopic solid. It reacts with $XeF₆$ and $XeOF₄$.

 $XeO₃ + 2XeF₆ \longrightarrow 3XeOF₄$

 $XeO₃ + XeOF₄ \longrightarrow 2XeO₂F₂$

 $XeO₃$ is soluble in water, but does not ionize. However, in alkaline solution above pH 10.5 it forms the xenate ion $[HXeO₄]$ ⁻

 $XeO_3 + NaOH \longrightarrow Na^+ [HXeO_4]^-$

Sodium xenate

7.4 STRUCTURE AND BONDING

7.4.1 XENON DIFLUORIDE (XeF2)

XeF₂ is a linear molecule F – Xe – F. Valence bond representation of XeF₂ may be explained, if one of the 5p electrons is promoted to the 5d orbital.

Structure of XeF6

Smart Notes

The Lewis structure of XeF_6 is given in figure. Xe uses six of its valence electrons in forming six σ -bonds with six F-atoms, while the remaining two electrons form a lone-pair. To accommodate, 7 electron-pair, therefore, Xe should exhibit sp³d³ hybridisation as shown below.

Structure of XeF_6 : distorted octahedral

7.4.4 XENON TRIOXIDE (XeO3)

Xenon trioxide (XeO₃) may be prepared by the hydrolysis of XeF₄ or XeF₆.

Structure of XeO³

In $XeO₃$, Xe exhibits sp³ hybridisation. One of the hybrid orbitals is occupied by a lone pair, while other three are involved in the bond formation. This leads to a trigonal pyramidal structure of XeO₃.

Structure of XeO₃ (trigonal pyramidal)

IARTLE COACHING

Smart No

MIND MAP

