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RELATIONS AND FUNCTIONS

1.1 INTRODUCTION

In our day to day life, we often talk about relation between two persons, between two straight
lines (e.g. perpendicular lines, parallel lines) etc.

Let A be the set of all male students in Delhi whose fathers live in Delhi. Let B be the set of all the
people living in Delhi. Let a be a male student living in Delhi i.e. a € A. Let b be the father of a. Then
b eB. And a is related to b under son-father relation. If we denote the son-father relation by symbol R
then a is related to b under relation R. We can also express this by writing aRb. Here R denotes the
relation ‘is son of’.

We can also express this statement by saying that the pair of a and b is in relation R i.e., the
ordered pair (a, b)eR. This pair (a b) is ordered in the sense that a and b can’t be interchanged
because first co-ordinate a represents son, and the second coordinate b represents father of a. Similarly
if a, e A and b, is father of a,, then (a,, b;)e R . So we can think of the relation R as a set of ordered
pairs whose first coordinate is in A and the second coordinate is in B. Thus R < AxB . Since the relation
‘is son of i.e., R is a relation relating elements of A to be elements of B, we will say that R is a relation
from set A to set B.

1.2 DEFINITION

A relation R, from a non-empty set A to another non-empty set B, is a subset of AxB

Equivalently, any subset of AxB is relation from A to B.

Thus, R is a relation from AtoB < R c AxB

Pt Rg{(a, b):aeA, beB}
Example: Let A={1 2}, B=1{a, b,c}
Let R={(1 a) (1 c)}
Here R is a subset of AxB and hence it is a relation from A to B.

21 DOMAIN OF A RELATION

Let R be arelation from A to B. The domain of relation R is the set of all those elements a € A
such that (a, b)e R for some b e R. Domain of R is precisely written as domain R.

Thus domain of (R) = {ae A: (a, b)e R for some b e B}

Thus domain of R = set of first components of all the ordered pair which belong to R.
2.2 RANGE OF A RELATION

Let R be a relation from A to B. The range of R is the set of all those elements b e R such
that (a, b)e R for some ac A.

Thus range of R ={b €B:(a, b)e R for some a e A}.

Range of R = set of second components of all the ordered pairs which belong to R.
Set B is called as codomain of relation R.

Examplel: LetA ={2, 3,5} and B = {4, 7, 10, 8}
Let aRb < a divides b
Then R = (2, 5) and range of R = {4, 10, 8}
Codomain of R =B = {4, 7, 10, 8}
Example2: Let A={1, 2,3}, B=1{2 4, 6, 8}
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Let R be a relation defined from A to B by xRy <V is double of x, V x € A
Then 1R2, 2R4, 3R6

~ R={12)(24)(36)
A relation from a set A to set B can be represented in any one of the following four forms.
3.1 ROSTER FORM
In this form a relation R is represented by the set of all ordered pairs belonging to R.
Example: LetA={-1,1,2}and B ={1, 4, 9, 10}
Let aRb means a® =b
Then R (in roaster form) = {(-1, 1), (1, 1), (2, 4)}
3.2 SET-BUILDER FORM
In this form, the relation R is represented as {(a, b): a € A, b € B, a.....b}, the blank is to be replaced
by the rule which associates a to b.
Example: LetA={1,3,5, 7}, B={2, 4,6, 8}
Let R ={(1, 2), (3, 4), (5, 6), (7, 8)}, then R in the builder form can be written as
R={ab):acA beB;a-b=-1
3.3 BY ARROW DIAGRAM
In this form, the relation R is represented by drawing arrows from first component to the second
component of all ordered pairs belonging to R.
Example: Let A = {1, 2, 3, 4}, B = {0, 2, 4} and R be
relation ‘is less than’ from A to B, then

A B
1 0
R={12)@4)24)@E ) 2 2
This relation R from A to B can be 3 4
represented by the arrow diagram as shown 4

in the figure.

Let A and B be two non empty finite sets having p and g elements respectively.
Then n(AxB)=n(A).n(B)= pq
Therefore, total number of subsets of AxB = 24

Since each subset of AxB is a relation from A and B, therefore total number of relations form A
to B is 2P
Note: Empty relation ¢ and universal relation AxB are called trivial relations and any other relation is
called a non trivial relation.
Example: Let A={1, 2}, B={3, 4, 5}

Then n(AxB)=n(A).n(B)=2x3=6
Number of relations from A to B = 2° = 64

Important formulae/points

e If Ris relation from A to B and (a, b) £ R, then we also write a R b (read as a is not related to b)
¢ In an identity relation on A every element of A should be related to itself only.

e aRb shows that a is the element of domain set and b is the element of range set.
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The concept of functions is very important because of its close relation with various phenomena
of reality. Thus when we square a given real number in fact we perform an operation on the number x to
get number x2. Hence a function may be viewed as a rule which produces new elements from some given
elements. Function is also called mapping or map.

e Independent Variable
The symbol which can take an arbitrary value from a given set is called an independent variable.
e Dependent Variable
The symbol whose value depends on independent variables is called a dependent variable.

e Definition 1
A function f is a relation from a non-empty set A to a non-empty set B such that domain of f is A
and no two distinct ordered pairs in f have the same first element.
e Definition 2
Let A and B be two non-empty sets, then a rule of which associates each element of A with a
unique element of B is called a mapping or a function from A to B we write f: A— B (read as f is a

function from A to B).
If f associates x € A to y € B, then we say that y is the image of the element x under the function

f or the fimage it by f(x) and we write y = f(x). The element x is called the pre-image or inverse-image
of y.

Thus for a function from A to B:

() A and B should be non-empty.

(i) Each element of A should have image in B.

(i) No element of A should have more than one images in B.

The set A is called as the domain of the map f and the set B is called as the co-domain. The set
of the images of all the elements of A under the map f is called the range of f and is denoted by f(A).

Thus range of fi.e. f(A)={f(x): x € A},

Clearly f(A)c B

Thus,
e It is necessary that every f image is in B, but there may be some elements in B, which are not f

image of any element of A i.e., whose pre-image under f is not in A.
e Two or more elements of A may have same image in B.
e f:Xx —y means that under the function f from A to B, an element x of A has image y in B.

¢ If domain and range of a function are not to be written, sometimes we denote the function f by
writing y =f(x) and read it as y is a function of x.

e A function which has R or one of its subsets as its range is called “real valued function”. Further,
if its domain is also R or a subset of R, it is called a real function, where R is the set of real
numbers.
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» Algebraic functions: Functions consisting of finite number of terms involving powers and roots
of the independent variable with the operations +, —, x, + are called algebraic functions.
Examples: f(x) =+/x—1 , f(x)=+/x +x3

> Polynomial functions: f(x) = ap + aix + axx® + ......... + anx" , where ao, ai, az, ...... ,an € Ris
said to be a polynomial function of degree n.

» Logarithmic function: If a > 0, a # 1, then the function y = loga X, X € R* (set of positive real

numbers) is called a logarithmic function, if a = e, the logarithmic function is denoted by In x.
Logarithmic function is the inverse of the exponential function.
For loga X to be real, x must be greater than zero.

y =logax,a>0and # 1 y

Domain : (0, ) ; Range : (-0, ©) ; logax (a > 1)
09X (a>

X

log.x (0<a<1)

» Exponential function: If a > 0, a # 1, then the function defined by y = a*, x € R is called an
exponential function with base a.

y=f(x)=a*,a>0,a=1 y a>1
Domain: R : Range : (0, «) ; 0<a<1
1
0 X
» ldentity function: An identity function in X is y

f(x) = x
defined as f: R —» R, f(X) = x.

X
0
» Absolute value function: An absolute value y
function in x is defined as f: R —» R, f(x) = |X|.
-x, x<0
=f(x)=|x|= ’ -
y=1f(x) = x| {x, & L (%) = x
Domain : R ; Range : [0, ) ;
X
o)

Note that x = 0 can be included either with positive values of x or with negative values of x. As we
know, all real numbers can be plotted on the real number line, | x | in fact represents the distance of
number ‘X’ from the origin, measured along the number-line. Thus | x | > 0. Secondly, any point ‘X’ lying

on the real number line will have it's coordinates as (x, 0). Thus it's distance from the origin is \/x_2

Hence |x|= \/x_2 Thus we can define | x | as |x|= \/x_ze.g. if x = =25, then
| x| =2.5,ifx=3.8then|x|=3.8.

There is another way to define | x | as | x | = max {x, —x}.

Basic properties of | x |
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o Ix|I=1x]

e Geometrical meaning of |x —y| is the distance between x and y.
e |x|>a => x>aorx<-aifaeR" and xe RifaeR".

e |X|<a = —a<x<aifaeR" and xe ¢ifae R U {0}

o |xy|=|x]lyl
° i:m,y;ﬁo
yl 1yl

o [x+yl<|x|+]y]
It is a very useful and interesting property. Here the equality sign holds if x and y either both are
non-negative or non-positive (i.e. X. y > 0). (| x| + |y |) represents the sum of distances of numbers
x and y from the origin and |x + y| represents the distance of number x + y from the origin (or
distance between ‘X’ and ‘-y’ measured along the number line).
o x=yl=[x|~]yl|
Here again the equality sign holds if x and y either both are non-negative or non-positive (i.e. x. y
>0). (| x| =]y represents the difference of distances of numbers x and y from the origin and |x
—y| represents the distance between X’ and ‘y’ measured along the number line.
The last two properties can be put in one compact form i.e., x| ~ |y| < [x £ y| < |X] + |y].
» Greatest integer function (step function): The function f(x) = [X] is called the greatest integer
function and is defined as follows:
[X] is the greatest integer less than or equal to X .
Then [x] = x if X Is an integer
= integer just less than x if x is not an integer.
Examples: [3]=3,[2.7] =2, [-7.8] =-8,[0.8] =0
In other words if we list all the integers less then or equal to X, then the integer greatest among
them is called greatest integer of Xx. Greater integer of x is also called integral part

of x.
y =f(x) =[x] .
Domain: R; Range : | 2 &—o°
1 S
A oA § x
: : dl 2 8
: b—l—l
o« o i
» Signum function: The function is defined as
y =f(x) = sgn () y
Ix1
sgn(x)z{x » x#0 10
0: X=0
~1, x<0 * X
or sgn(x)=<¢0, x=0 0-1
1, x>0
Domain: R; Range — {-1, 0, 1}
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» Rational algebraic function: A function of the form f(x)=% , wWhere p(x) and q(x) are
g(x

polynomials and q(x) = 0, is called a rational function.

The domain of a rational function % is the set of all real numbers except points where q(x) =
X
0.
» Constant function: The function defined as f: R y
— {c} where f(x) = c y=c

Let us consider two functions.
f: D1 —> Randg: D2, — R. We describe functions f + g, f — g, f.g and f/g as follows:
e f+g:D — Risafunction defined by
(f+g)x=1(x) +g(x), whereD=Din D>
e f—-g:D — Ris afunction defined by
(f-g)x=1f(x)—g(X), where D=Din D>
e f.g:D— Risafunction defined by
(f.g)x=1f(x).g(x), where D = D1 D>
e f/g:D — Ris afunction defined by
(f/g)x=%, where D = D1 {X € Dz : g(x) # 0}

(af)(x) = af(x) x e D, and a is any real number.

We have seen that f is a function from A to B, if each element of A has image in B and no
element of A has more than one images in B.
But for a function f from A to B following possibilities are there
e Distinct elements of A have distinct images in B.

e More then one element of A may have same image in B.

e Each element of B is the image of some element of A.

e There may be some elements in B which are not the images of any element of A.
Because of the above mentioned possibilities, we have the following types of functions:

_ 6 MAHESH SIR'S NOTES - 7798364224
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10.1 One-one or injective map A f B
A map f:A—B is said to be one-one or N

injective if each and every element of set A has 2

distinct images in set B. -1 -2
The map f:A{-11 3} > B{-2 2 6, 7} given 0 6

by f(x)=2x is a one-one map. !

10.2 Many one map: A f B
Amap f:A{-11 2} B 4,7} is said to .

1
be many one if and only if it is not one-one. / 4
-1
The map f : A — B given byi‘(x)zx2 is a /
many-one map. 2 !

10.3 Onto map or surjective map: A f(x)=3x B
A map f: A— B is said to be onto map or

L . . . 1
surjective map if and only if each element of B is 1
the image of some element of A i.e. if and only if for -1 -3
every y eBthere exists some xeA such that 2 6

y =f(x).
Thus f is onto iff f(A)=Bi.e. range of f = co-domain of f.
Amap f:A{l, -1 2} - B{L -3, 6} given by f(x)=3x is an onto map.

Note: Functions which are not onto, are into.
10.4 One-one onto map or bijective map: A f B

A map f: A— B is said to be one-one onto

or bijective if and only if it is both one-one and onto 2
ie., if -1 -2
(i) distinct element of A have distinct images 3 6

in B.
(i) each element of B is the image of some
element of A.
The map f : All, -1, 3} - Bf2, -2, 6} given by f(x)=2x is a one-one onto map.
e A one-one onto function is also called a one-to-one correspondence or one-one
correspondence.
e Let f: A — B be a function from finite set A to finite set B. Then
1. fis one-one = n(A)<n(B)
2. fisonto = n(B)s n(A)
3. fis one-one onto = n(A)=n(B)

Let A, B, C be three non-empty sets, f be a function from A to B and g be a function from B to
C. The question arises : can we combine these two functions to get a new function? Yes! The most
natural way of doing this is to send every element x € A in two stages to an element of C; first by applying
f to x and then by applying g to the resulting element f(x) of B .
DEFINITION

Let f:A—>B and g:B — C be any two mappings. Then f maps an element x € A to an
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element f(x) = y e B and this y is mapped by g to an element z e C . Thus z = g(y) = g(f(x))
Thus we have a rule, which associates with each x e A, a unique element z = g(f(x)) of C.

This rule is therefore a mapping from A to C. We denote this mapping by gof (read as ‘g composition f")
and call it the composite mapping of f and g

gof f v xeA
z=g(y) = 9(f(x))
y=f(x)
gof

The composition of two functions is also called the resultant of two functions or the function
of a function.

Observe that the order of events occur from right to left i.e. gof reads composite of f and g
and it means that we have to first apply f and then follow it up with g.

Note that for the composite function gof to exist, it is essential that range of f must be a subset
of domain of g.

(i) Dom. (gof) = {x : x € domain (f), f(x) € domain (g)}
(ii) If gof is defined then it is not necessary that fog is defined.

I| Illustration 6 |

Question: Let f={ 2) (2 3), (4 5)}and g={@2, 3),(3,5) (5, 2)}. Check whether gof and fog is
defined, also find the range of gof.
Solution: + f={{12) (2 3) (4 5)} g={23) (3 5) 5 2)
Thendom . f={1, 2, 4}; Range f = {2, 3, 5}; dom.g ={2, 3, 5}; Range g ={3, 5, 2}
since dom. g = Range f, .. gof is defined
But dom . f # Range g, .. fog is not defined.
Also in this particular example, dom. (gof) =dom . f = {1, 2, 4}

(gof)) = glf (V] =9(2)=3
(gof)(2) = gIf (2)] = g(3) =
(gof)(4)=glf (4] = 9(5) =

Hence range of gof is {2, 3, 5}.

Let f be one-one and onto map from A to B. Since f is onto, therefore v y e B there exist x € A
such that f(x)= y and since f is one-one therefore this element x is unique. Thus we can define a map,
say g from B onto A such that g(y) = X . This map g is called inverse map of f and is denoted by f .

Thus f™*:B — A such that f *(y)=x iff f(x)=y

e How to find the inverse of a given function?

In order to find the inverse of the functionf(x), let y =f(x)

From this express x in terms of y. This value of x in terms of y will be f‘l(y). Now put x in place
of yin f(y) to get f *(x).

Note: f ! exists if and only if f is one-one onto.

_ 8 MAHESH SIR’S NOTES - 7798364224
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lety =f(x) > y=2x = x=% = ffl(y)=% = ffl(x)zg
f‘l(x)_%x
B
f—l
2
_2 N/
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