

Relations & Functions

RELATIONS 1

1.1 INTRODUCTION 1.1

In our day to day life, we often talk about relation between two persons, between two straight lines (e.g. perpendicular lines, parallel lines) etc.

Let *A* be the set of all male students in Delhi whose fathers live in Delhi. Let *B* be the set of all the people living in Delhi. Let *a* be a male student living in Delhi i.e. *a A* . Let *b* be the father of *a*. Then *b* ∈ *B*. And *a* is related to *b* under son-father relation. If we denote the son-father relation by symbol R then *a* is related to *b* under relation *R*. We can also express this by writing *aRb* . Here *R* denotes the relation 'is son of'.

We can also express this statement by saying that the pair of a and *b* is in relation *R* i.e., the ordered pair $(a, b) \in R$. This pair (a, b) is ordered in the sense that *a* and *b* can't be interchanged because first co-ordinate *a* represents son, and the second coordinate *b* represents father of *a*. Similarly if $a_1 \in A$ and b_1 is father of a_1 , then $(a_1, b_1) \in R$. So we can think of the relation R as a set of ordered pairs whose first coordinate is in A and the second coordinate is in B. Thus $R \subseteq A \times B$. Since the relation 'is son of' i.e., *R* is a relation relating elements of *A* to be elements of *B*, we will say that *R* is a relation from set *A* to set *B*.

1.2 DEFINITION

A relation *R*, from a non-empty set *A* to another non-empty set *B*, is a subset of *AB* Equivalently, any subset of $A \times B$ is relation from A to B. Thus, R is a relation from A to B \Leftrightarrow R \subseteq $A \times B$

$$
\Leftrightarrow R \subseteq \{(a, b): a \in A, b \in B\}
$$

Example: Let $A = \{1, 2\}$, $B = \{a, b, c\}$

Let $R = \{(1, a), (1, c)\}$

Here *R* is a subset of $A \times B$ and hence it is a relation from *A* to *B*.

DOMAIN AND RANGE OF A RELATION 2

2.1 DOMAIN OF A RELATION 2.1

Let *R* be a relation from *A* to *B*. The domain of relation *R* is the set of all those elements $a \in A$ such that $(a, b) \in R$ for some $b \in R$. Domain of R is precisely written as domain R.

Thus domain of $(R) = {a \in A : (a, b) \in R}$ for some $b \in B}$

Thus domain of *R* = set of first components of all the ordered pair which belong to *R*.

2.2 RANGE OF A RELATION

Let *R* be a relation from *A* to *B*. The range of *R* is the set of all those elements $b \in R$ such that $(a, b) \in R$ for some $a \in A$.

Thus range of $R = \{b \in B : (a, b) \in R$ for some $a \in A\}$.

Ī

Range of *R* = set of second components of all the ordered pairs which belong to *R*. Set *B* is called as codomain of relation *R*.

```
Example1: Let A = \{2, 3, 5\} and B = \{4, 7, 10, 8\}
```
Let *aRb ^a* divides *b*

Then $R = (2, 5)$ and range of $R = \{4, 10, 8\}$

imart Notes

Codomain of $R = B = \{4, 7, 10, 8\}$

Example2: Let $A = \{1, 2, 3\}$, $B = \{2, 4, 6, 8\}$

Let *R* be a relation defined from *A* to *B* by $xRy \Leftrightarrow y$ is double of $x, \forall x \in A$

Then 1*R*2, 2*R*4, 3*R*6

 \therefore $R = \{(1, 2), (2, 4), (3, 6)\}$

REPRESENTATION OF A RELATION 3

A relation from a set *A* to set *B* can be represented in any one of the following four forms.

3.1 ROSTER FORM 3.1

In this form a relation *R* is represented by the set of all ordered pairs belonging to *R*.

Example: Let $A = \{-1, 1, 2\}$ and $B = \{1, 4, 9, 10\}$

Let aRb means $a^2 = b$

Then *R* (in roaster form) = $\{(-1, 1), (1, 1), (2, 4)\}$

3.2 SET-BUILDER FORM

In this form, the relation R is represented as $\{(a, b): a \in A, b \in B, a....b\}$, the blank is to be replaced

by the rule which associates *a* to *b*.

Example: Let $A = \{1, 3, 5, 7\}$, $B = \{2, 4, 6, 8\}$

Let $R = \{(1, 2), (3, 4), (5, 6), (7, 8)\}$, then R in the builder form can be written as *R* = { (a, b) : *a* ∈ *A*, *b* ∈ *B*; *a* − *b* = −1}

3.3 BY ARROW DIAGRAM

In this form, the relation *R* is represented by drawing arrows from first component to the second component of all ordered pairs belonging to *R*.

Example: Let *A* = {1, 2, 3, 4}, *B* = {0, 2, 4} and *R* be

relation 'is less than' from *A* to *B*, then $R = \{(1, 2), (1, 4), (2, 4), (3, 4)\}\$

This relation *R* from *A* to *B* can be represented by the arrow diagram as shown in the figure.

TOTAL NUMBER OF RELATIONS 4

Let *A* and *B* be two non empty finite sets having *p* and *q* elements respectively.

Then $n(A \times B) = n(A) \cdot n(B) = pq$

Therefore, total number of subsets of $A \times B = 2^{pq}$

Since each subset of $A \times B$ is a relation from *A* and *B*, therefore total number of relations form *A* to *B* is *pq* 2

Note: Empty relation ϕ and universal relation $A \times B$ are called trivial relations and any other relation is called a non trivial relation.

Example: Let $A = \{1, 2\}, B = \{3, 4, 5\}$

Then $n(A \times B) = n(A)$. $n(B) = 2 \times 3 = 6$

 \therefore Number of relations from *A* to *B* = 2^6 = 64

Important formulae/points

- •*If R is relation from A to B and (a, b)* \in *R, then we also write a R <i>b* (read as a is not related to *b*)
- •*In an identity relation on A every element of A should be related to itself only.*
- •*aRb shows that a is the element of domain set and b is the element of range set.*

Ī

imart Notes

FUNCTIONS 5

The concept of functions is very important because of its close relation with various phenomena of reality. Thus when we square a given real number in fact we perform an operation on the number *x* to get number x². Hence a function may be viewed as a rule which produces new elements from some given elements. Function is also called mapping or map.

• **Independent Variable**

The symbol which can take an arbitrary value from a given set is called an independent variable.

• **Dependent Variable**

The symbol whose value depends on independent variables is called a dependent variable.

DEFINITION OF A FUNCTION

• **Definition 1**

 6

> A function *f* is a relation from a non-empty set *A* to a non-empty set *B* such that domain of *f* is *A* and no two distinct ordered pairs in *f* have the same first element.

• **Definition 2**

Let *A* and *B* be two non-empty sets, then a rule of which associates each element of *A* with a unique element of *B* is called a mapping or a function from *A* to *B* we write $f : A \rightarrow B$ (read as *f* is a function from *A* to *B*).

If fassociates $x \in A$ to $y \in B$, then we say that *y* is the image of the element *x* under the function *f* or the *f* image it by $f(x)$ and we write $y = f(x)$. The element *x* is called the pre-image or inverse-image of *y*.

Thus for a function from *A* to *B*:

- (i) *A* and *B* should be non-empty.
- (ii) Each element of *A* should have image in *B.*
- (iii) No element of *A* should have more than one images in *B*.

DOMAIN, CO-DOMAIN AND RANGE OF A FUNCTION

The set *A* is called as the domain of the map *f* and the set *B* is called as the co-domain. The set of the images of all the elements of A under the map f is called the range of f and is denoted by $f(A)$.

Thus range of *f* i.e. $f(A) = \{f(x) : x \in A\}$.

Clearly $f(A) \subseteq B$

Thus,

7

- It is necessary that every *f* image is in *B*, but there may be some elements in *B*, which are not *f* image of any element of *A* i.e., whose pre-image under *f* is not in *A*.
- Two or more elements of *A* may have same image in *B*.
- $f: x \rightarrow y$ means that under the function *f* from *A* to *B*, an element *x* of *A* has image *y* in *B*.
- If domain and range of a function are not to be written, sometimes we denote the function *f* by writing $y = f(x)$ and read it as y is a function of x .
- A function which has *R* or one of its subsets as its range is called "real valued function". Further, if its domain is also *R* or a subset of *R,* it is called a real function, where *R* is the set of real numbers.

֚֚֚֚֚֚֚֚֚֬֕ **8 IMPORTANT FUNCTIONS AND THEIR GRAPHS 8**

Smart No

➢ **Algebraic functions:** Functions consisting of finite number of terms involving powers and roots of the independent variable with the operations $+, -, \times, \div$ are called algebraic functions.

Examples: $f(x) = \sqrt{x-1}$, $f(x) = \sqrt{x+x^3}$

- ▶ **Polynomial functions:** $f(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$, where $a_0, a_1, a_2, \dots, a_n \in \mathbb{R}$ is said to be *a* polynomial function of degree *n*.
- \triangleright **Logarithmic function:** If $a > 0$, $a \ne 1$, then the function $y = \log_a x$, $x \in R^+$ (set of positive real numbers) is called *a* logarithmic function, if *a* = *e*, the logarithmic function is denoted by ln *x*. Logarithmic function is the inverse of the exponential function.

For log^a *x* to be real, *x* must be greater than zero. $y = log_a x$, $a > 0$ and $\neq 1$

Domain : $(0, \infty)$; Range : $(-\infty, \infty)$;

y

a > 1

x

 $f(x) = x$

 $f(x) = x$

x

x

0

y

 $\overline{0}$

y

Ol

 $f(x) = -x$

1

Exponential function: If $a > 0$, $a \ne 1$, then the function defined by $y = a^x$, $x \in R$ is called an exponential function with base *a*.

 $0 < a < 1$

 $y = f(x) = a^x$, $a > 0$, $a \ne 1$ Domain : \boldsymbol{R} ; Range : (0, ∞) ;

Identity function: An identity function in x is defined as $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x$.

➢ **Absolute value function:** An absolute value function in *x* is defined as $f: \mathbf{R} \to \mathbf{R}$, $f(x) = |x|$. *y* = $f(x) = |x|$ l ∤ ſ > − X . X ≤ , $x>0$, $x \leq 0$ *x x x x* Domain : \mathbf{R} ; Range : $[0, \infty)$;

Ī

Note that *x* = 0 can be included either with positive values of *x* or with negative values of *x*. As we know, all real numbers can be plotted on the real number line, | *x* | in fact represents the distance of number '*x*' from the origin, measured along the number-line. Thus $|x| \ge 0$. Secondly, any point '*x*' lying on the real number line will have it's coordinates as (x, 0). Thus it's distance from the origin is $\sqrt{x^2}$. Hence $|x| = \sqrt{x^2}$. Thus we can define $|x| = \sqrt{x^2}$ e.g. if $x = -2.5$, then $|x| = 2.5$, if $x = 3.8$ then $|x| = 3.8$. There is another way to define $|x|$ as $|x|$ = max $\{x, -x\}$.

Basic properties of | *x* **|**

- $|| x || = | x |$
- Geometrical meaning of |*x* − *y*| is the distance between *x* and *y*.
- $|x| > a \Rightarrow x > a$ or $x < -a$ if $a \in \mathbb{R}^+$ and $x \in \mathbb{R}$ if $a \in \mathbb{R}$.
- $|x| < a \Rightarrow -a < x < a$ if $a \in \mathbb{R}^+$ and $x \in \phi$ if $a \in \mathbb{R} \cup \{0\}$
- $|xy| = |x||y|$
- $|\hat{-}| = \frac{|N|}{N}$, $y \neq 0$ | | $=\frac{|x|}{|x|}, y \neq$ *y x y x*
- $|x+y| \le |x| + |y|$

It is *a* very useful and interesting property. Here the equality sign holds if *x* and *y* either both are non-negative or non-positive (i.e. x. $v \ge 0$). ($|x| + |v|$) represents the sum of distances of numbers *x* and *y* from the origin and |*x* + *y*| represents the distance of number *x* + *y* from the origin (or distance between '*x*' and '−*y*' measured along the number line).

• |*x* − *y*| | *x* | ~ | *y* |

Here again the equality sign holds if *x* and *y* either both are non-negative or non-positive (i.e. *x*. *y* 0). (| *x* | − | *y* |) represents the difference of distances of numbers *x* and *y* from the origin and |*x* − *y*| represents the distance between '*x*' and '*y*' measured along the number line. The last two properties can be put in one compact form i.e., $|x| \sim |y| \le |x \pm y| \le |x| + |y|$.

 \triangleright **Greatest integer function (step function):** The function $f(x) = [x]$ is called the greatest integer function and is defined as follows:

[x] is the greatest integer less than or equal to x.

Then $[x] = x$ if x is an integer

= integer just less than *x* if *x* is not an integer.

Examples: $[3] = 3$, $[2.7] = 2$, $[-7.8] = -8$, $[0.8] = 0$

In other words if we list all the integers less then or equal to *x*, then the integer greatest among them is called greatest integer of *x*. Greater integer of *x* is also called integral part of *x*.

➢ **Signum function:** The function is defined as

$$
y = f(x) = \text{sgn}(x)
$$

sgn(x) = $\begin{cases} \frac{|x|}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$
or
$$
\text{sgn}(x) = \begin{cases} -1, & x < 0 \\ 0, & x = 0 \\ 1, & x > 0 \end{cases}
$$

Domain : \mathbf{R} ; Range \rightarrow {-1, 0, 1}

Ī

Smart No

y

 $\overline{\circ}$

x

y ⁼*c*

➢ **Rational algebraic function:** *A* function of the form (x) $(x) = \frac{p(x)}{q(x)}$ *q x* $f(x) = \frac{p(x)}{n}$, where $p(x)$ and $q(x)$ are polynomials and $q(x) \neq 0$, is called *a* rational function.

The domain of *a* rational function (x) (x) *q x* $\frac{p(x)}{n}$ is the set of all real numbers except points where $q(x) =$ Ω .

➢ **Constant function:** The function defined as *f* : *R* \rightarrow {*c*} where $f(x) = c$

ALGEBRAIC OPERATIONS ON FUNCTIONS 9

Let us consider two functions.

- *f* : *D*₁ → *R* and *g* : *D*₂ → *R*. We describe functions *f* + *g*, *f* − *g*, *f*.*g* and *f*/*g* as follows:
- $f + g : D \rightarrow \mathbb{R}$ is a function defined by

$$
(f+g) x = f(x) + g(x), \quad \text{where } D = D_1 \cap D_2
$$

- *f* − *g* : *D* → *R* is *a* function defined by $(f - g)$ $x = f(x) - g(x)$, where $D = D_1 \cap D_2$
- $f \text{. } g : D \rightarrow \mathbb{R}$ is a function defined by $(f \cdot g)$ $x = f(x) \cdot g(x)$, where $D = D_1 \cap D_2$
- $f / g : D \rightarrow \mathbb{R}$ is a function defined by

 $(f / g) x =$ $\left(\mathrm{\mathsf{x}}\right)$ $\left(\text{x} \right)$ *g ^x f x*

$$
, \qquad \text{where } D = D_1 \cap \{x \in D_2 : g(x) \neq 0\}
$$

•
$$
(\alpha f)(x) = \alpha f(x), x \in D_1
$$
 and α is any real number.

TYPES OF FUNCTIONS 10

We have seen that *f* is a function from *A* to *B,* if each element of *A* has image in *B* and no element of *A* has more than one images in *B*.

But for a function *f* **from** *A* **to** *B* **following possibilities are there**

Ī

- Distinct elements of *A* have distinct images in *B*.
- More then one element of *A* may have same image in *B*.
- Each element of *B* is the image of some element of *A*.
- There may be some elements in *B* which are not the images of any element of *A*. Because of the above mentioned possibilities, we have the following types of functions:

10.1 One-one or injective map

A map $f: A \rightarrow B$ is said to be one-one or injective if each and every element of set *A* has distinct images in set *B*.

The map $f : A\{-1, 1, 3\} \rightarrow B\{-2, 2, 6, 7\}$ given

by $f(x) = 2x$ is a one-one map.

10.2 Many one map:

A map $f : A\{-1, 1, 2\} \rightarrow B\{1, 4, 7\}$ is said to be many one if and only if it is not one-one.

The map $f : A \rightarrow B$ given by $f(x) = x^2$ is a many-one map.

10.3 Onto map or surjective map:

A map $f: A \rightarrow B$ is said to be onto map or surjective map if and only if each element of *B* is the image of some element of *A* i.e. if and only if for every $y \in B$ there exists some $x \in A$ such that $y = f(x)$.

A B

f

2 –2

6

Thus *f* is onto iff $f(A) = B$ i.e. range of $f =$ co-domain of *f*.

A map *f* : *A*{1, −1, 2} → *B*{1, −3, 6} given by *f*(*x*) = 3*x* is an onto map.

Note: Functions which are not onto, are into.

10.4 One-one onto map or bijective map:

A map $f: A \rightarrow B$ is said to be one-one onto or bijective if and only if it is both one-one and onto i.e., if

(i) distinct element of *A* have distinct images in *B*.

(ii) each element of *B* is the image of some element of *A*.

The map *f* : *A*{1, −1, 3} → *B*{2, −2, 6} given by *f*(*x*) = 2*x* is a one-one onto map.

• A one-one onto function is also called a one-to-one correspondence or one-one correspondence.

1 –1 3

• Let $f: A \rightarrow B$ be a function from finite set *A* to finite set *B*. Then

Ī

1. *f* is one-one
$$
\Rightarrow
$$
 $n(A) \le n(B)$

2. *f* is onto $\Rightarrow n(B) \le n(A)$

3. *f* is one-one onto \Rightarrow $n(A) = n(B)$

COMPOSITION OF FUNCTIONS 11

Let *A, B, C* be three non-empty sets, *f* be a function from *A* to *B* and *g* be a function from *B* to *C*. The question arises : can we combine these two functions to get a new function? Yes! The most natural way of doing this is to send every element $x \in A$ in two stages to an element of *C*; first by applying *f* to *x* and then by applying *g* to the resulting element $f(x)$ of *B*.

DEFINITION

Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be any two mappings. Then *f* maps an element $x \in A$ to an element $f(x) = y \in B$ and this *y* is mapped by *g* to an element $z \in C$. Thus $z = g(y) = g(f(x))$

Thus we have a rule, which associates with each $x \in A$, a unique element $z = g(f(x))$ of C. This rule is therefore a mapping from *A* to *C*. We denote this mapping by *gof* (read as '*g* composition f') and call it the composite mapping of *f* and *g*.

$$
(gof)(x) = g(f(x)) \ \forall \ x \in A
$$

mart Notes

The composition of two functions is also called the resultant of two functions or the function of a function.

Observe that the order of events occur from right to left i.e. *gof* reads composite of *f* and *g* and it means that we have to first apply *f* and then follow it up with *g*.

Note that for the composite function *gof* to exist, it is essential that range of *f* must be a subset of domain of *g*.

(i) Dom. $(gof) = \{x : x \in domain(f), f(x) \in domain(g)\}$

(ii) If *gof* is defined then it is not necessary that *fog* is defined.

INVERSE FUNCTION 12

Let *f* be one-one and onto map from *A* to *B*. Since *f* is onto, therefore $\forall y \in B$ there exist $x \in A$ such that $f(x) = y$ and since *f* is one-one therefore this element x is unique. Thus we can define a map, say g from B onto A such that $\bm{g}(\bm{y})$ = \bm{x} . This map g is called inverse map of f and is denoted by f^{-1} .

 $\text{Thus } f^{-1}: B → A$ such that $f^{-1}(y) = x$ iff $f(x) = y$

• **How to find the inverse of a given function?**

In order to find the inverse of the function $f(x)$, let $y = f(x)$

From this express x in terms of y. This value of x in terms of y will be $f^{-1}(y)$. Now put x in place of *y* in $f^{-1}(y)$ to get $f^{-1}(x)$.

Important formulae/points

Function f from A to B have the properties.

- •*Distinct elements of A may have distinct images in B.*
- •*More then one element of A may have same image in B.*
- •*There may be some elements in B which are not the images of any element of A.*

Ī

–1 2 3