

Date : Marks :

TEST ID: XIICH0101 CHEMISTRY

THE SOLID STATE

	Single Correct A	Answer Type	
1.	Schottky defect generally appears in a) NaCl b) KCl	c) CsCl	d) All of these
2.	Which arrangement of electrons leads ferromagne	•	up mi or these
_	a) $\uparrow \uparrow \uparrow \uparrow$ b) $\uparrow \downarrow \uparrow \downarrow$	c) ↑ ↑ ↑ ↓ ↓	d) None of these
3.	The crystal are bounded by plane faces (<i>f</i>), straigh between these is :	t edges (e) and interfacial	angel (<i>c</i>). The relationship
	a) $f + c = e + 2$ b) $f + e = c + 2$	c) $c + e = f + 2$	d) None of these
4.	The melting point of RbBr is 682°C, while that of N		
	of NaF is much higher than that of RbBr is that : a) The two crystals are not isomorphous		
	b) The molar mass of NaF is smaller than that of RI	bBr	
	c) The internuclear distance $r_{\rm c} + r_{\rm a}$ is greater for R		
	d) The bond is RbBr has more covalent character t		
5.	If a crystal lattice of a compound, each corner of a oxygen and centre of a cube is enjoyed by tungster		
	a) Na_2WO_4 b) $NaWO_3$	c) Na_3WO_3	d) Na_2WO_3
6.	In antifluorite structure, the <mark>negativ</mark> e ions:		
	a) Occupy tetrahedral voids		
	b) Occupy octahedral voidsc) Are arranged in ccp		
	d) Are arranged in hcp		
7.	An insulator oxide is :		
0	a) CuO b) C _O O	c) Fe_2O_3	d) All of these
8.	A solid with high electrical and thermal conductivi a) Si b) Li	c) NaCl	d) ice
9.	The radius ratio $\left(\frac{r_+}{r}\right)$ of an ionic solid (A^+B^-) is 0.6		
	a) 6 (r_/ b) 8	c) 2	d) 10
10.	The axial angles in triclinic crystal system are		
	a) $\alpha = \beta = \gamma = 90^{\circ}$ b) $\alpha = \gamma = 90^{\circ}, \beta \neq 90^{\circ}$	c) $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	d) $\alpha = \beta = \gamma \neq 90^{\circ}$
11.	In NaCl crystal each Cl ⁻ ion is surrounded by a) 4 Na ⁺ ions b) 6 Na ⁺ ions	c) 1 Na ⁺ ion	d) 2 Na ⁺ ions
12.	For an ionic crystal of the general formula A^+B^- ar		
	a) Greater than 0.73		
	b) Between 0.73 and 0.41		
	c) Between 0.41 and 0.22d) Less than 0.22		
13.	The ratio of cations to anion in a octahedral close p	backing is :	
	a) 0.414 b) 0.225	c) 0.02	d) None of these
14.	Electrons in a paramagnetic compound are a) Shared b) Unpaired	c) Donated	d) Daired
15.	Crystals which are good conductor of electricity ar		d) Paired
	a) Ionic crystals b) Covalent crystals	c) Metallic crystals	d) Molecular crystal
16.	An element has bcc structure having unit cells 12.0		
	a) 12.08×10^{23} b) 24.16×10^{23}	c) 48.38×10^{23}	d) 12.08×10^{22}
	1	MAHESH SIR'S NO	TES - 7798364224

17.		es of voids, which one is t	he largest void?	
	a) Triangular	b) Cubic	c) Tetrahedral	d) Octahedral
18.	The crystalline structure			
	a) Hexagonal close pack	ing	b) Face centred cubic	
	c) Square planar		d) Body centred cubic	
19.	-	y of the order of (ohm ⁻¹ c	-	_
	a) 10 ¹²	b) 10 ⁸	c) 10^2	d) 10 ⁻⁶
20.		o, Cd and Sb, all of which a		-
	a) Se, Cd and Sb	b) Zr, Mo and Cd	c) Sr, Zr and Cd	d) Zr, Mo and Sb
21.		s 0.93. The expected lattic		
	a) Tetrahedral	b) Square planar	c) Octahedral	d) Body centred cubic
22.		ng defects in the crystals l	-	
~~	a) Frenkel defect	b) Schottky defect	c) F-centres	d) Interstitial defect
23.	-) and conducting <mark>nature p</mark>	roduced in heating is due	to:
	a) Metal excess defects d			
		esent in an int <mark>erstitial site</mark>		
	c) Trapped electrons			
24	d) All of the above	a and the adge length of it	a unit call is 2.04 Å The w	huma of the unit call in
24.	cm ³ will be	e and the <mark>edge length of it</mark>	s unit cen is 3.04 A. The vo	blume of the unit cell in
	a) $1.6 \times 10^{-21} \text{ cm}^3$	b) 2.81 $\times 10^{-23}$ cm ³	c) $6.02 \times 10^{-23} \text{ cm}^3$	d) $6.6 \times 10^{-24} \text{ cm}^3$
25.	-			If the radius of the cation is
20.	110 pm, the radius of th		ine substance is boo pin.	in the radius of the cation is
	a) 288 pm	b) 398 pm	c) 618 pm	d) 144 pm
26.		pected to have tetrahedra	_	· •
	a) 0.414 to 0.732	b) 0.225 to 0.414	c) 0.155 to 0.225	d) 0.732 to 1
27.	The interparticle forces	in solid hydrogen are :		
	a) Hydrogen bonds	b) Covalent bonds	c) Co-ordinate bonds	d) Van der Waals' forces
28.	If Z is the number of ato	ms in the unit cell that rep	presents the closest packi	ng sequence <i>–ABC ABC –,</i>
	the number of tetrahedr	al voids in the unit cell is ϵ	equal to :	-
	a) Z	b) 2Z	c) $\frac{Z}{Z}$	d) $\frac{Z}{-}$
20			$\frac{c}{2}$	$\frac{d}{4}$
29.	Quartz is an example of : a) Chain silicate	b) Infinite sheet silicate	c) Framework silicate	d) Cyclic silicate
20				
30.	For AX ionic crystal to e	exist in bcc structure, the r	atio of radii $\left(\frac{r_{anions}}{r_{anions}}\right)$ shou	ıld be
	a) Between 0.41 and 0.7	3	b) Greater then 0.73	
	c) Less than 0.41		d) Equal to 1.0	

Date : Marks :

TEST ID: XIICH0101 CHEMISTRY

THE SOLID STATE

ANSWER KEY

1)	d	2)	а	3)	а	4)	С
5)	b	6)	С	7)	d	8)	b
9)	а	10)	С	11)	b	12)	b
13)	а	14)	b	15)	С	16)	b
17)	d	18)	b	19)	b	20)	d
21)	d	22)	b	23)	d	24)	b
25)	d	26)	b	27)	d	28)	b
29)	С	30)	b				

SMARTLEARN COACHING

Date : Marks :

TEST ID: XIICH0101 CHEMISTRY

THE SOLID STATE

	: HINTS AND SOLUTIONS :				
1	(d)				
	Schottky defect arises when equal number of a cations and anions are missing from their sites.				
	This defect is generally found in ionic compounds like NaCl, KCl, CsCl, etc.				
2	(a)				
	Ferromagnetism is due to spontaneous alignment of the magnetic dipoles in same direction.				
3	(a)				
	f + sc = e + 2; where f is plane faces, c is interfacial angle and e is straight edges.				
4					
-	This leads to stronger coulombic forces of attractions in NaF.				
5	(b)				
	No. of Na atoms present at each corner = $8 \times \frac{1}{8} = 1$				
	No. of O atoms present at the centre of edges = $12 \times \frac{1}{4} = 3$				
	No. of W atoms present at the centre of cube $= 1$				
	Formula of the compound $=$ NaWO ₃				
6	(c)				
	In antifluorite crystal (Na ₂ O) the anions are arranged in cubic close packing while the cations				
-	occupy all the tetrahedral voids.				
7	(d)				
0	All are insulator (b)				
8	In the given choices lithium has high thermal and electrical conductance.				
9	(a)				
5	Relation between radius ratio and coordination number				
	r_c Coordination				
	r _a number				
	0.155 - 0.225 3				
	0.225 - 0.414 4				
	0.414 - 0.732 6				
	0.732 - 1 8				
10					
	The axial angles in triclinic <mark>cry</mark> stal <mark>s</mark> ystem are different and none is perpendicular to any of the				
	others <i>i. e.</i> , $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$.				
11					
	In NaCl crystal, Cl ⁻ ions adopt cubic close packed arrangement and Na ⁺ ions occupy all the				
	octahedral sites. Therefore, Na and Cl have 1 : 1 stoichiometry. In other words, each Na ⁺ ion is surrounded by six Cl ⁻ ions which are disposed towards the corners of a regular octahedron.				
	Similarly, each Cl^{-} ion is surrounded by six Na ⁺ ions.				
12	(b)				
	The radius ratio for co-ordination and has 4, 6, and 8 lies in between the ranges [0.225 –				
	0.414], $[0.414 - 0.732]$ and $[0.732 - 1]$ respectively.				
13	(a)				
	$\frac{r^+}{r^-}$ for octahedral void = 0.414; $\frac{r^+}{r^-}$ for cubic = 0.732 - 1				
15	r^{-1} for occalication volume $= 0.111$, r^{-1} for cubic $= 0.752$ $= 1$ (c)				
10					

16	Metallic crystals are good conductor of heat and current due to free electrons on them.			
16	(b) One unit call of here has store -2 . Hence 12.09×10^{23} unit calls will have store			
	One unit cell of bcc has atoms = 2. Hence 12.08×10^{23} unit cells will have atoms = $2 \times 12.08 \times 10^{23}$			
	$= 2 \times 12.00 \times 10^{10}$ = 24.16 × 10 ²³			
17	(d)			
	The vacant spaces between the spheres in closed packed structures is called void. The voids are			
	two types, tetrahedral voids and octahedral voids. Also, radius of tetrahedral voids and			
	octahedral voids are $r_{\rm void} = 0.225 \times r_{\rm sphere}$ and $r_{\rm void} = 0.414 \times r_{\rm sphere}$ respectively. Thus,			
	octahedral void is larger than tetragonal void.			
18				
	Sodium chloride (NaCl) has face centred cubic structure. It contains 4 Na ⁺ and 4 Cl ⁻ in the unit			
19	cell. Each Na ⁺ is surrounded by 6 Cl ⁻ ions and <i>vice</i> – <i>versa.</i> (b)			
19	The conductance order of metals is 10^6 to 10^8 ohm ⁻¹ cm ⁻¹			
20	(d)			
	Each possess unpaired electrons.			
21	(d)			
	The radius ratio of CsCl is 0.9 <mark>3 hence, its structure is body</mark> centred cubic.			
22	(b)			
	Schottky defects - This defect is due to vacancy at a cation site accompanied by vacancy at an			
	anion site so that the electrical neutrality of the system is maintained. Due to this defect, density			
23	decreases. (d)			
25	These are characteristics of metal excess defects due to interstitial cation.			
24	(b)			
	Edge length $\alpha = 3.04 \text{ Å}$			
	$= 3.04 \times 10^{-8}$ cm			
	Volume of bcc (cubic) cell = a^3			
	$=(3.04 \times 10^{-8})^3$			
	$= 2.81 \times 10^{-23} \text{ cm}^3$			
25				
	For fcc arrangement $2(r^+ + r^-) = edge length$			
	$2(10 + r^{-}) = 508$			
	So, $r^- = 114 \text{ pm}$			
26				
	Radius ratio(r_+ /Structure r r			
	< 0.155 linear			
	0.155 – 0.225 planar			
	triangular			
	0.225 - 0.414 tetrahedral			
	0.414 – 0732 octahedral			
77	0.732 - 1 bcc			
27	(d) Solid hydrogen involves van der Waals' forces.			
28	(b)			
-	In ccp or fcc and hcp, number of tetrahedral voids is double the number of atoms forming the			
	main lattice.			
20				

29

(c)

Quartz is a covalent crystal having a framework of silicates, i.e., a three dimensional network when all the four oxygen atoms of each of SiO_4 tetrahedron are shared.

30

(b) For body centred cubic (bcc) structure, the ratio of radii (r_+/r_-) lies in between 0.732-1.00. \therefore The ratio of radii for bcc is greater than 0.73.

