

Smart Assignment

Date : Marks :

TEST ID: XIICH0102 CHEMISTRY

THE SOLID STATE

Single Correct Answer Type

31.	Which crystal is expecte	d to be soft and have low i	nelting point?	
	a) Covalent	b) Metallic	c) Molecular	d) Ionic
32.	The elements commonly	vused for making transisto	ors are	
	a) C and Si	b) Ga and In	c) P and As	d) Si and Ge
33.	Silver (atomic weight =	108 g mol^{-1}) has a densit	y of 10.5 g cm ⁻³ . The num	ber of silver atoms on a
	surface of area 10^{-12} m ² can be expressed in scientific notation as $y \times 10^{x}$. The value of x is			
	a) 3	b) 5	c) 7	d) 9
34.	The first order reflection	n (n = 1) from a crystal of	the X-ray from a copper a	node tube
	$(\lambda = 1.54 \text{ Å})$ occurs at an	n angle of 45°. <mark>What is the</mark>	<mark>distance</mark> between the set o	of plane causing the
	diffraction?			
	a) 0.1089 nm	b) 0.1089 m	c) 0.905 Å	d) 1.089×10^{-9} m
35.	What is the number of te	etrahedral <mark>voids per atom</mark>	in a crystal?	
	a) 1	b) 2	c) 6	d) 8
36.	Iodine is a			
	a) Electrovalent solid	b) Atomic solid	c) Molecular solid	d) Covalent solid
37.	In CsCl type structure th	e coo <mark>rdinati</mark> on number of	Cs ⁺ and Cl ⁻ are	
	a) 6, 6	b) 6, 8	c) 8, 8	d) 8, 6
38.	Structure of a mixed oxi	de is cubic close-packed (<mark>c.c.p). The cubic unit</mark> cell c	of mixed oxide is composed
	of oxide ions. One fourth	h of the tetrahedral voids	are occupied by divalent i	metal A and the octahedral
	voids are occupied by a	monovalent metal <i>B</i> . The f	formula of the oxide is :	
	a) <i>AB O</i> ₂	b) A_2BO_2	c) $A_2 B_3 O_4$	d) AB_2O_2
39.	The example of orthosil	icate is :		
	a) MgCaSi ₂ O ₆	b) Mg ₂ SiO ₄	c) $Fe_2O_3SiO_2$	d) Ba ₃ Al ₂ Si ₆ O ₈
40.	A compound CuCl has fa	ce centred cubic structure	. Its density is 3.4 g cm^{-3} .	The length of unit cell is :
	a) 5.783Å	b) 6.783Å	c) 7.783Å	d) 8.783Å
41.	The orthorhombic, the v	alue of <i>a</i> , band care respe	ctively 4.2 Å, 6.8A Å an <mark>d 8</mark>	3.3 Å. Given the molecular
0	mass of the solute is 155	5 g m ol ⁻¹ and that of densi	ty is 3.3g/cc, the num <mark>ber</mark>	of formula units per unit
	cell is			
	a) 2	b) 3	c) 4	d) 6
42.	Which one of the following	ing is a covalent crystal?		
	a) Rock salt	b) Ice	c) Quartz	d) Dry ice
43.	LiF is a/an :			
	a) Ionic crystal	b) Metallic crystal	c) Covalent crystal	d) Molecular crystals
44.	A binary solid $(A B)$ h	as a rock salt structure. If	the edge length is 400 ph	n and radius of cation is 75
	pm the radius of anion is	S: h) 125 mm	a) 250 mm	
4 -	a) 100 pm The limiting redius ratio	D) 125 pm	c) 250 pm	d) 325 pm
45.	The limiting radius ratio	b) 0.255 to 0.414	a) 0.155 to 0.225	$d = 0.414 \pm 0.722$
16	d = 0.000.155	0) 0.255 l0 0.414	() 0.155 (0 0.225)	(1) 0.414 (0 0.752)
40.	A metallic element has a cubic lattice. Each edge of the unit of cell is ZA. The density of the metal is 2.5			
	a cm ⁻³ The unit colle in			
	g cm ⁻³ . The unit cells in	200 g of metal are	c) 1×10^{22}	d) 1×10^{25}
<i>1</i> 7	g cm ⁻³ . The unit cells in a) 1×10^{24}	200 g of metal are b) 1×10^{20}	c) 1×10^{22}	d) 1×10^{25}
47.	g cm ⁻³ . The unit cells in a) 1×10^{24} Potassium has a bcc stru will be :	b) 1×10^{20} cture with nearest neighbor	c) 1×10^{22} our distance 4.52 Å. Its ato	d) 1×10^{25} mic weight is 39. Its density

Sec. 1	S	Smai	rt Assig	jnment
S				
48	a) 454 kg m ⁻³	b) 804 kg m ⁻³	c) 852 kg m ^{-3}	d) 910 kg m ⁻³ unit cell is 351 nm. Atomic
40.	radius of the lithium will	he ·	length of the side of its	ant cen is 551 pm. Ronne
	2 300 pm	b) 240 pm	c) 152 nm	d) 75 nm
40	Bragg's equation is :	b) 240 pm	c) 152 pm	dy / 5 pm
49.	$a_{1} = 20 \sin \theta$	b $a_{1}^{2} - 2d \sin \theta$	$a = d \sin \theta$	$d = (2d/m) \sin \theta$
ГO	a) $n\lambda = 2\theta \sin \theta$	$D = 2u \sin \theta$	c) $2\pi\lambda = u \sin \theta$	$u_{j} \lambda = (2u/n) \sin \theta$
50.	neighber silver store en	d wigo warag What is t	ha tring of unit call?	each li atom has 8 hearest
	a) Rody controd cubic	a vice – versa. What is t	ne type of unit cell?	
	a) Body centred cubic			
	b) Face centred cubic	. I :		
	c) Simple cubic for either	LI atoms alone or Ag ato	ms alone	
Γ1	u) None of the above	lattico atom Accounicat	he compare a citions and a	tom Bogginias the face
51.	in the face centred cubic	attice, atom A occupies t	and of the face control no	inter the formula of the
	centre positions. Il one al		one of the face centred po	lints, the formula of the
		h) 4D		
50	d) $A_2 B$	$D AB_2$	$C A_2 B_2$	$(a) A_2 B_5$
52.	which compound has hig	hest factice energy?	-) I :I	
52	a) Libr	D) LICI	C) Lll	d) LIF
53.	In a face centred cubic ce	II, an atom at the face cer	itre is snared by :	
- 4	a) 4 unit cells	b) 2 unit cells	c) I unit cell	d) 6 unit cells
54.	Extremely pure samples	of Ge and Si are non-con	ductors, but their conduct	ivity increases suddenly on
	introducing in their cry	/stal lattice.	a) Dath (a) and (b)	
	a) AS	D) B	c) Both (a) and (b)	d) None of these
55.	lodine crystals are :			
	a) Metallic solid	b) Ionic solid	c) Molecular solid	d) Lovalent solid
56.	which of the following st	atements about amorpho	bus solids is incorrect?	
	a) They melt over a range	e of temperature	b) They are anisotropic	
	c) There is no orderly ari	angement of particles	d) They are rigid and inc	compressible
57.	The number of atoms pre	esent in a simple cubic un	at cell are :	
	a) 4	b) 3	c) 2	d) 1
58.	An AB_2 type structure is	found in :		
60	a) NaCl	b) CaF_2	c) Al_2O_3	d) $N_2 O$
59.	A cubic crystal possesses	in allelements of syn	nmetry.	
0	a) 9	b) 13	c) 1	d) 23
60.	A solid compound contain	ns X, Y and Z atoms in a c	ubic lattice with X atom o	ccupying the corners. Y
	atoms in the body centre	d positions and Z atoms a	at the centres of faces of th	ie unit cell. What is the
	empirical formula of the	compound?		
	a) XY_2Z_3	b) XYZ ₃	c) $X_2 Y_2 Z_3$	d) $X_8 Y Z_6$

Smart Assignment

Date : Marks :

TEST ID: XIICH01/002 CHEMISTRY

THE SOLID STATE

ANSWER KEY

31)	С	32)	d	33)	С	34)	С
35)	b	36)	С	37)	С	38)	d
39)	b	40)	а	41)	С	42)	С
43)	а	44)	b	45)	b	46)	d
47)	d	48)	С	49)	b	50)	а
51)	d	52)	d	53)	b	54)	С
55)	С	56)	b	57)	d	58)	b
50)	Ь	60)	h	-			

SMARTLEARN COACHING

Smart Assignment

Date :

Marks :

TEST ID: XIICH0102 CHEMISTRY

THE SOLID STATE

: HINTS AND SOLUTIONS :

31	(c) Follow characteristics of molecular solids
32	(d)
	Si and Ge are used for making transistors.
33	(c)
	Volume of one mole of silver atoms = $\frac{108}{105}$ cm ³ /mol
	Volume of one silver atom = $\frac{108}{10.5} \times \frac{10.5}{6.022 \times 10^{23}} \text{ cm}^3$
	So, $\frac{4}{3}\pi r^3 = \frac{108}{10.5} \times \frac{1}{6.022 \times 10^{23}} = 1.708 \times 10^{-23}$ $r^3 = 0.407 \times 10^{-23} \text{cm}^3 = 0.407 \times 10^{-29} \text{m}^3$
	Area of each silver atom,
	$\pi r^2 = \pi (0.407 \times 10^{-29} \mathrm{m^3})^{2/3}$
	So, number of silver atoms in given area
	$- \frac{10^{-12}}{10^8} - \frac{10^8}{10^8}$
	$(0.407 \times 10^{-29} \text{ m}^3)^{2/3} \pi \times 2$
	$= 1.6 \times 10^7 = y \times 10^x$
24	So, $x = 7$
54	$n\lambda = 2d \sin \theta$
	$1 \times 1.54 = 2d \sin 45^{\circ}$
	$1 \times 1.54 = 2d \times 0.850$
	$2d = \frac{1.54}{1.54} = 0.005$
	$2a = \frac{1}{0.850} = 0.903 \text{ A}$
35	
	In the close packing of <i>n</i> atoms, the number of tetrahedral voids are 2 <i>n</i> . Hence, their number
37	
57	The coordination number is $8:8$ in $Cs^+:Cl^-$
	The coordination number is $6:6$ in Na ⁺ : Cl ⁻
38	(d)
	In a cubic close packing, th <mark>e number</mark> of octahedral voids is equal to number of atoms and number
	of tetrahedral voids is equal to the twice the number of atoms
	Number of atoms is a ccp array = 1 A^{2+} B^{+} O^{2-}
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$1 \times 2 \times \frac{1}{4}$ 1 1
	$\frac{1}{2}$ 1 1
	or 1 2 2
	AB_2O_2
39	(b) (b)
40	In orthosilicate SiO_4^2 ion exist as discrete unit.
40	(a) Molecular mass of CuCl — 99
	n = 4 for face centred cubic cell

 $n \times \text{mol.wt.}$ \therefore Density = $V \times av. no. 4 \times 99$ $a^3 \times 6.023 \times 10^{23}$ 0r 3.4 = $a^3 \times 6.023 \times 10^{23}$ $a = 5.783 \times 10^{-8} \,\mathrm{cm}$:. = 5.783Å 41 (c) $V \times N \times d$ Z =т $4.2 \times 8.6 \times 8.3 \times 10^{-21} \times 6.023 \times 10^{23} \times 3.3$ 155 = 3.14 ≈ 4 42 (c) Quartz (SiO_2) is a covalent crystal. 43 (a) LiF is an ionic crystal. An ionic solid has ions as constituent units at lattice points held by oppositely charged ions. 44 (b) Edge = $2r^+ + 2r^ \therefore 400 = 2 \times 75 + 2r^{-1}$ \therefore $r^- = 125 \text{ pm}$ 45 (b) For tetrahedral shape, limiting radius ratio is 0.225 – 0.414. 46 (d) Number of unit cells = $\frac{\text{mass of metal}}{\text{mass of one unit cell}}$ Given, edge length of unit cell = $2\text{\AA} = 2 \times 10^{-8}$ cm Mass of metal = 200 g Density of metal = 2.5 g cm^{-3} Volume of unit cell = $(edge length)^3 = (2 \times 10^{-8})^3$ $= 8 \times 10^{-24} \text{ cm}^3$ Mass of one unit cell = volume \times density $= 8 \times 10^{-24} \times 2.5$ $= 20 \times 10^{-24}$ \therefore No. of unit cells in 200 g metal = $\frac{\text{mass of metal}}{\text{mass of one unit cell}}$ 200 $=\frac{1}{20 \times 10^{-24}}$ $= 10 \times 10^{24} = 1.0 \times 10^{25}$ (d) 47 For bcc, $r = \frac{\sqrt{3}}{2} = a$ Or $a = \frac{2r}{\sqrt{3}} = \frac{2 \times 4.52}{1.732}$ = 5.219 Å = 522 pm. $n \times M$ Density = $\frac{n}{a^3 \times N_A \times 10^{-30}}$ 2 × 39 $(522)^3 \times (6.02 \times 10^{23}) \times 10^{-30}$ $= 0.91 \text{g/cm}^3 = 910 \text{ kg m}^{-3}$ 48 (c)

Smart Assignment

-04	
	For bcc structure
	(b)
	Bragg's equation is $n\lambda = 2d \sin \theta$
	(a) The based on the second distribution of a failed
	(d)
	Number of atoms (A) per unit cell = $8 \times \frac{1}{8} = 1$
	Number of atoms (<i>B</i>) per unit cell = $(6-1) \times \frac{1}{2} = \frac{5}{2}$
	(One atom <i>B</i> is missing)
	Thus formula is $A_1 B_2 = A_2 B_2$
	(A) (A)
	(u) Due te small anion, it possess maximum ionis nature
	bue to sman amon, it possess maximum fonic nature.
	(V) The fcc unit cell has 8 atoms at the eight corners and one atom at each of six faces. The atom at the
	face is shared by two unit cells
	(c)
	Doning of elements of group 14 (Ge and Si) with group 15 (As) elements produces excess of
	electrons and shows <i>n</i> -type conduction, the symbol <i>n</i> indicating flow of negative charge in them.
	Doping of elements of group 14 (Ge and Si) with group 13 (B) elements products hole (electron
	deficiency) in the crystal and shows p-type conduction, the symbol p indicating flow of positive
	charge.
	(c)
	Molecular solids are the substances having molecules as constituent units having interparticle
	forces such as van der waal's forces or hydrogen bonds.
	(d)
	The number of ato <mark>ms present in sc, fcc and bcc unit cell are 1, 4, 2 res</mark> pectively.
	(b)
	N_2O is gas; CaF_2 is AB_2 type crystalline solid.
	(d)
	These are characteristic elements of symmetry of a cubic crystal.
	Since atom X is present at corner and one corner is shared by eight unit cells,
	Number of X atoms per unit cell = $\frac{1}{8} \times 8 = 1$
	Atom Y is present at body centred position and used by only one unit cell. So, number of Y atoms
	per unit cell = 1
	Atom Z is present at the ce <mark>nter of eac</mark> h face, so shared by two unit cells,
	Thus, number of Z atoms per unit cell = $\frac{1}{2} \times 6 = 3$
	- 2

Hence, the formula of compound = XYZ_3^{-1}

at the