

Date : Marks : TEST ID: XIICH0202 CHEMISTRY

SOLUTIONS

Single Correct Answer Type

31.	If sodium sulphate is considered to be complet solution, the change in freezing point of water		
	in 1 kg of water, is $(k_f = 1.86 \text{ Kkg mol}^{-1})$	(ΔI_f) , when 0.01 mole of so	uluin sulphate is dissolved
	a) 0.0372 K b) 0.0558 K	c) 0.0744 L	d) 0.0186 K
32	2.5 L of NaCl solution contain 5 moles of the so		d) 0.0100 K
02.	a) 5M b) 2M	c) 2.5M	d) 12.5M
33.	If for a sucrose solution elevation in boiling po	-	•
	solution for the same molal concentration?		or the
	a) 0.1 b) 0.2	c) 0.16	d) 0.26
34.	In two solutions having different osmotic pres	<mark>sure, the solut</mark> ion of higher o	osmotic pressure is called :
	a) Isotonic solution		
	b) Hypertonic solution		
	c) Hypotonic solution		
	d) None of these		
35.	Isotonic solution have the same		
	a) Normality b <mark>) Density</mark>	c) Molar concentration	
36.	Vapour pressure of pure $A = 100$ torr, moles =	2; vapour pressure of pure	B=80 torr, moles = 3. Total
	vapour pressure of the mixture is	100.0	
	a) 440 torr b) 460 torr	c) 180 torr	d) 88 torr
37.	Which of the following is incorrect?		
	a) Relative lowering of vapour pressure is inde	-	he solvent.
	b) The relative lowering of vapour pressure is	• • • •	- l+
	c) Vapour pressure of a solution is lower thand) The relative lowering of vapour pressure is		
20	Density of a 2.05 M solution of acetic acid in w		
50.	a) 23.077% b) 230.77%	c) 2.3077%	d) 0.23077%
39	The atmospheric pressure is sum of the	C/ 2.307770	d) 0.2307770
55.	a) Pressure of the biomolecules		
	b) Vapour pressure of atmospheric constituen		
	c) Vapour pressure of chemicals and vapour pr		
	d) Pressure created on to atmospheric molecul		
40.	Lowering in vapour pressure is the highest for		
	a) 0.2 <i>m</i> urea		
	b) 0.1 <i>m</i> glucose		
	c) $0.1 m \text{MgSO}_4$		
	d) 0.1 <i>m</i> BaCl ₂		
41.	6.02×10^{20} molecules of urea are present in 10	00 mL of its solution. The co	ncentration of urea solution
	is		
	a) 0.1 M b) 0.01 M	c) 0.001 M	d) 0.02 M
42.	The osmotic pressure (At27°C) of an aqueous		
	2×10^{-3} atm . If R=0.080 L atm mol ⁻¹ K ⁻¹ , the last result of the second sec		
	a) 7.2×10^5 b) 3.6×10^5	c) 1.8×10^5	d) 1.0×10^5

43. 100 cc of 0.6 N H_2SO_4 and 200 cc of 0.3 N HCl were mixed together. The normality of the solution will be

	be			
	a) 0.2 N	b) 0.4 N	c) 0.8 N	d) 0.6 N
44.	Mole fraction (X) of any	solution is equal to		
	a) no. of moles of solut	te	h) no. of gram – equival	ent of solute
	volume of solution in	litre	b) $\frac{\text{no. of gram} - \text{equival}}{\text{volume of solution}}$	n in litre
	c) $\frac{\text{no. of moles of solute}}{1 + 1 + 1 + 1 + 1}$		d) <u>no. of moles of an</u>	ny constituent
	mass of solvent in kg		total number of moles	s of all constituents
45.	Which is not a colligative	e property in the following	g?	
	a) pH of abuffer solution		b) Boiling point elevatio	n
	c) Freezing point depres	sion	d) Vapour pressure lowe	ering
46.	The normality of 10% (w	veight/volume) acetic acid	d is	
	a) 1 N	b) 1.3 N	c) 1.7 N	d) 1.9 N
47.	Two solutions have diffe	erent osmotic pre <mark>ssure. Th</mark>	<mark>le solu</mark> tion of lower osmot	tic pressure is called :
	a) Isotonic solution			
	b) Hypertonic solution			
	c) Hypotonic solution			
	d) None of these			
48.	Osmatic pressure is 0.08	321 atm at temperature of		-
	a) 0.33	b) 0.22×10^{-2}	c) 0.33×10^{-2}	d) 0.44×10^{-2}
49.			<mark>sotonic with 1%</mark> of a solut	ion of an unknown solute.
	The molar mass of unkn			
	a) 136.2	b) 171.2	c) 68.4	d) 34.2
50.	The distribution law hol			
	a) Heterogeneous	b) Homogeneous system	isc) Both (a) and (b)	d) None of these
- 4	systems			
51.	-	nd CH ₃ COOH are prepare		
	pressures are p_1 and p_2	espectively. The correct r	elationship between the o	$p_1 = p_2$
	a) $p_1 = p_2$	b) $p_1 > p_2$	c) $p_2 > p_1$	d) $\frac{p_1}{p_1 + p_2} + \frac{p_2}{p_1 + p_2}$
52.	The freezing point of aq	ueous solution that contai	ins 5% by mass urea, 1.0°	% by mass KCl and 10% by
	mass of glucose is : $(K_f H)$			
	a) 290.2 K	b) 285.5 K	c) 269.93 K	d) 250 K
53.		olutions has the highest n		
0	a) 6 g of NaOH/100 mL		c) N phosphoric acid	d) 8 g of KOH/L
54.		ed with 200 mL of 0.6 N H	· · ·	
	will be			
	a) 0.3 N	b) 0.2 N	c) 0.5 N	d) 0.1 N
55.	A solute when distribut	ited be <mark>tween tw</mark> o immis	scible phases remains as	ssociated in phase II and
	dissociated in phase I. If	α is the degree of dissociat	tion and <i>n</i> is the number o	f molecules associated then
	:			
	a) $K = \frac{c_{\mathrm{I}}}{c_{\mathrm{II}}}$	$K = \frac{c_{\rm I}}{c_{\rm I}}$	$c K = \frac{c_{\rm I}}{c_{\rm I}}$	d) $K = c_{\rm I}(1-\alpha)$
	$c_{\rm II}$	b) $K = \frac{c_{\mathrm{I}}}{\sqrt[n]{c_{\mathrm{II}}(1-\alpha)}}$	$c_{\rm II} \kappa = c_{\rm II} (1 - \alpha)$	$\int K = \frac{n \sqrt{C_{II}}}{\sqrt[n]{C_{II}}}$
56.	Which solution would ex	khibit abnormal osmotic p	ressure?	
	a) Aqueous solution of u	rea		
	b) Aqueous solution of c	ommon salt		
	c) Aqueous solution of g	lucose		
	d) Aqueous solution of s			
57.	If α is the degree of disse	ociation of Na ₂ SO ₄ the van	n't Hoff factor (<i>i</i>) used for	calculating the molecular
	mass is			
	a) $1 - 2 \alpha$	b) $1 + 2 \alpha$	c) $1 - \alpha$	d) $1 + \alpha$

MAHESH SIR'S NOTES - 7798364224

58. The temperature at which vapour pressure of a solvent in its liquid and solid phase becomes same is called :

Smart Assignment

- a) b. p.
 b) f. p.
 c) Krafft point
 d) None of these
 59. The vapour pressure of a pure liquid *A* is 40 mm Hg at 310 K. The vapour pressure of this liquid in a solution with liquid *B* is 32 mm Hg. What is the mole fraction of *A* in the solution if it obeys the Raoult's law?
 a) 0.5
 b) 0.6
 c) 0.7
 d) 0.8
- 60. Which of the following shows maximum depression in freezing point? a) K_2SO_4 b) NaCl c) Urea d) glucose

Date : Marks :

TEST ID: XIICH0202 CHEMISTRY

SOLUTIONS

ANSWER KEY

31)	b	32)	b	33)	b	34)	b
35)	С	36)	d	37)	d	38)	а
39)	b	40)	d	41)	b	42)	b
43)	b	44)	d	45)	а	46)	С
47)	С	48)	С	49)	С	50)	а
51)	b	52)	С	53)	а	54)	С
55)	d	56)	b	57)	b	58)	b
59)	d	60)	а	-			

SMARTLEARN COACHING

Date : Marks :

TEST ID: XIICH0202 CHEMISTRY

SOLUTIONS

HINTS AND SOLUTIONS

31	(b)
	$Na_2SO_4 \rightarrow 2Na^+ + SO_4^{2-}$
	van't Hoff factor for $Na_2SO_4 = 3$
	$\Delta T_f = i \times k_f \times m$
	$=3 \times 1.86 \times 0.01$
	$\begin{bmatrix} \because & m = \frac{0.01}{1} = 0.01 \end{bmatrix}$
32	=0.0558 K
52	(b) Number of moles of solute
	$Molarity = \frac{\text{Number of moles of solute}}{\text{Volume of solution (in L)}}$
	\Rightarrow molarity $=\frac{5}{205}=2M$
33	(b)
22	Elevation in boiling point is a colligative property as it depends upon the number of particles
	$\Delta T_b \propto n$
	For sucrose $n = 1 \Delta T_b = 0.1^{\circ}$ C
	For NaCl, $n = 2$, $\Delta T_h = 0.2^{\circ}$ C
34	(b)
	In a pair of two solution, the one having higher osmotic pressure is called hypertonic and the
	other having lower osmotic pressure is called hypotonic.
36	(d)
	$P_{total} = P_A^{\circ} X_A + P_B^{\circ} X_B$
	where , $P =$ vapour pressure
	X = mole fraction
	Total moles of A and $B = 5$
	Mole fraction of compound $A = \frac{2}{5}$
	Mole fraction of compound $B = \frac{3}{2}$
	then, $P_{total} = 100 \times \frac{2}{5} + 80 \times \frac{3}{5}$
	= 88 torr
37	(d)
	According to Raoult's law the relative lowering of vapour pressure of a dilute solution is equal to
	the mole fraction of the solute present in the solution, <i>i.e.</i> ,
	$p-p_{\rm s}$ n
	$\frac{p-p_s}{p} = \frac{n}{n+N}$
38	(a)
	If $H_2 O = x \operatorname{mol} = 18 \mathrm{xg}$
	Then urea = $x \mod = 60 x g$

40

(d)

 $\frac{P_0 - P_s}{P_0} = \text{molality} \times (1 - \alpha + x\alpha + y\alpha)$ The value of $P_0 - P_s$ is maximum for BaCl₂. **(b)** Mole of urea $= \frac{6.02 \times 10^{20}}{6.02 \times 10^{23}} = 10^{-3} \text{ mol}$ Conc. of solution (in molarity) $= \frac{10^{-3}}{100} \times 1000 = 0.01 \text{ M}$ **(b)** $\pi V = \frac{w}{m} RT$ $M = \frac{wRT}{\pi V}$ Here, w=6 g, $\pi = 2 \times 10^{-3} atm$, T=300 K, R=0.080 L-atm mol⁻¹ K⁻¹, V =200 mL =0.2 L $M = \frac{6 \times 0.080 \times 300}{2 \times 10^{-3} \times 0.2} = 3.6 \times 10^{5}$

43

(b)

(a)

(c)

(c)

41

42

Normality of the mixed solution

$$= \frac{N_1 V_1 + N_2 V_2}{V_1 + V_2}$$

= $\frac{0.6 \times \frac{100}{1000} + 0.3 \times \frac{200}{1000}}{\frac{100 + 200}{1000}}$
= $\frac{0.6 \times 0.1 + 0.3 \times 0.2}{0.3}$
= $\frac{0.06 + 0.06}{0.3}$
= $\frac{0.12}{0.3} = 0.4$ N

45

Colligative properties certain properties of dilute solution containing non-volatile solute do not depend upon the nature of the solute dissolved but depend only upon the number of particles of the solute present, are called colligative properties. Some colligative properties are boiling point elevation, freezing point depression, lowering of vapour pressure,

46

$$N = \frac{w \times 1000}{\text{eq. wt.} \times V(\text{mL})} = \frac{10 \times 1000}{60 \times 100} = 1.66 \text{ N}$$
(c)

47

In a pair of two solution, the one having higher osmotic pressure is called hypertonic and the other having lower osmotic pressure is called hypotonic.

49

Two solutions are isotonic if their osmotic pressure are equal.

$$\pi_1 = \pi_2$$

$$M_1 ST_1 = M_2 ST_2$$

 $(M_1 \text{ and } M_2 \text{ are molarities})$

At a given temperature,

$$M_{1} = M_{2}$$

$$\frac{1000w_{1}}{m_{1}V_{1}} = \frac{1000w_{2}}{m_{2}V_{2}} \quad (V_{1} = V_{2} = 100mL)$$
Cane sugar unkown
$$\therefore \quad \frac{w_{1}}{m_{1}} = \frac{w_{2}}{m_{2}}$$

$$\frac{5}{329} = \frac{1}{m_{2}}$$

$$m_{2} = \frac{342}{5} = 68.4 \text{ g mol}^{-1}$$

MAHESH SIR'S NOTES - 7798364224

204	
50	(a)
	The two solvents in which a solute is to be distributed shows $K = c_1/c_2$ only when two liquids are
	immiscible, <i>i. e.</i> , No. of phase ≥ 2 or heterogeneous systems.
51	(b)
51	KNO ₃ dissociates completely while CH ₃ COOH dissociates to a small extent hence, $p_1 > p_2$
ГЭ	
52	
	$\Delta T = \Delta T \text{ for glucose} = \Delta T \text{ for KCl} + \Delta T \text{ for urea}$
	$=\frac{1000 \times 1.86 \times 10}{100 \times 180} + \frac{1000 \times 1.86 \times 1 \times 2}{74.5 \times 100} + \frac{1000 \times 1.86 \times 5}{100 \times 60}$
	= 3.069
	\therefore f. p. = 273 - 3.069 = 269.93 K
53	(a)
	$N = \frac{6 \times 1000}{40 \times 100} = 1.5 \text{ N}$
54	(c)
	$N_1 V_1 + N_2 V_2 = N_3 V_3$
	$0.3 \times 100 + 0.6 \times 200 = N_3 \times 300$
	$0.3 + 1.2 = 3N_3$
	$N_3 = 0.5$
55	(d)
	This is the mathematically <mark>modi</mark> fied form of distribution law when solute undergoes association
	in either of the solvent.
56	(b)
	Common salt dissociate <mark>s to furnish ions.</mark>
57	(b)
	$Na_2SO_4 \rightleftharpoons 2Na^+ + SO_4^{2-}$
	van't Hoff factor $i=[1+(y-1) \alpha]$
	where y is the number of ions from one mole solute, (in this case =3), α the degree of
	dissociation.
	$i = (1 + 2 \alpha)$
58	(b)
	It is definition of freezing point.
59	
	According to Raoult's law,
	$P_A = P_A^\circ \varkappa_A$
	or $\varkappa_A = \frac{P_A}{P_A^\circ}$
	$=\frac{32 \text{ mm Hg}}{40 \text{ mm Hg}} = 0.8$
60	(a)
00	Depression in freezing point is a colligative property. It depends on number of particles. More the
	number of particles, more will be depression in freezing point.
	1. $K_2SO_4 \rightarrow 2K^+ + SO_4^{2-}$
	1. $\Lambda_2 S O_4 \rightarrow 2\Lambda + S O_4$
	It gives 3 particles.
	2. $NaCl \rightarrow Na^+ + Cl^-$
	It gives 2 particles.
	3. Urea \rightarrow No dissociation
	4. Glucose \rightarrow No dissociation.

 \therefore K_2SO_4 produces maximum number of particles

MAHESH SIR'S NOTES - 7798364224

 \therefore K_2SO_4 has maximum depression in freezing point.

SMARTLEARN COACHING