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1.1 WAVES 
 A wave may be defined as a periodic disturbance travelling with a finite velocity through a medium. Such a 

wave-motion remains unchanged in shape, as it progresses. 

The important characteristics of a wave are: 

 (i) The particles of the medium traversed by a wave execute relatively small vibrations about their 

mean positions but the particles are not permanently displaced in the direction of propagation of the wave. 

 (ii)  Each successive particle of the medium executes a motion quite similar to its predecessors along/ 

perpendicular to the line of travel of the wave. 

 (iii)  During wave-motion only transfer of energy takes place but not a portion of the medium. 

 A vibration in its simplest form is called a simple harmonic motion and a particle executing such a motion 

may be considered as a source, which radiates waves in all directions. Usually the amplitude of vibration of the 

individual particles decreases as the distance of them from the source increases. But we will consider only the 

propagation of waves in which there is no change in amplitude as the wave progresses. 

1.2 TRANSVERSE WAVES 
 A transverse wave is one in which particles of the medium vibrate in a direction at right angles to the line 

of propagation of the wave. 

 
 At any instant each particle of the medium is at its own displacement position in the process of executing a 

S.H.M. identical with others. The maximum displacement that every particle can have is called the amplitude of the 

wave. 

 The particles at A, A1, A2, ... are at their maximum displacement positions. The positions C1, C2 ... of the 

wave are called crests while the positions T1, T2, ... are called troughs. 

 Other particles of the medium are having their own individual displacements from the mean position which, 

sometime later would reach the maximum displacement position. Due to this it would appear as if crests and troughs 

travel forward in a wave-motion. As in S.H.M. the particle velocity is greatest where the displacement is least (zero) 

and the particles velocity is minimum where the displacement is maximum. Successive pairs of particles such as B 

and B2, A and A2, B1 and B3 are in the same phase and distance between such successive pairs in the same phase is 

called the wavelength of the wave (written as ). 

1.3 LONGITUDINAL WAVES 
 If the individual particles of the medium vibrate in the direction of propagation of the wave itself the wave 

is called a longitudinal wave. 

 In the transverse wave-motion the displacement curve is a ‘sine curve’ of displacements with alternate crests 

and troughs. In the longitudinal wave the disturbance is passing along a succession of compressions and rarefactions. 

Compressions are points of maximum density and correspond to the crests of transverse wave while the rarefactions 

are points of minimum density corresponding to the troughs of a transverse wave. Yet the graphical representation 

of a longitudinal wave-motion will be quite identical with that of the transverse wave. As in the transverse wave the 

distance between successive pairs of particles in the same phase is called the wavelength (). 

1.4 WAVE FREQUENCY 

 If the particles of the medium make n (also written as ) vibrations per second, n is called the frequency of 

the wave. The time taken for one vibration is the wave period T and T =  or  

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 = 1/T; unit − hertz (Hz). 

1.5  WAVELENGTH 

 We have already defined a wavelength  is the distance 

travelled by the wave in one period T unit − metre. 

 

 
1.6  WAVE VELOCITY 
 Wave velocity is the distance travelled by the wave in one second. Symbol v or c;  

unit − metre/second. 

 If the frequency of the wave is “f ” hertz and wavelength is “” metres, then the wave velocity v is 

  v = f  m/s … (1)  

 Wave velocity = Frequency  Wavelength 

 
 

 Let us consider a series of particles forming a long string 

stretched along the x-axis as shown.  

 Suppose the particle at the origin O acts as the source of a 

disturbance, which travels as a transverse wave in the positive 

direction of the x-axis with a velocity v. As the wave proceeds, 

each successive particle is set in motion.       
 

 Let the time be measured from the instant when the particle at the origin O is passing through its 

equilibrium position. Then the displacement y of this particle at any instant t can be represented by  

  y = f (t )  

 where f (t) is any function of time. The wave will reach a point P, distant x from O, in x/v   second. 

Thus the particle at P will start moving x/v second later than the particle at O. Therefore, the displacement 

y of the particle at P at any instant t will be the same as the displacement of the particle at the origin x/v 

second earlier i.e., at (t – x/v). Hence the displacement at P is given by  

  y = f (t – x/v)  

 Since v is a constant, we may write it as  

  y =  f  (vt – x)  … (i)  

 This is the equation of a wave of any shape travelling along the positive direction of x-axis with a 

constant velocity v.  The function f determines the exact shape of the wave.  

 Similarly, the equation for a wave travelling along the negative direction of x-axis would be  

  y = f (vt + x)   … (ii) 

 Thus the functions f (vt  x) represent travelling waves. We can also write these functions as f (x 

 vt ).  

 From equation (i) and (ii) the generation equation for the wave can be written as  

  y = f1 (vt – x) + f2 (vt + x)  … (iii)  

 To get the general differential equation, let us differentiate equation (iii) twice partially with 

respect to ‘t’. We get  

  + v2 (vt + x)       … (a)  

 where  and  are the second differentials of f1 & f2 respectively.  

 Again differentiating equation (iii) twice partially with respect to x, we get  

   = (vt – x) +  (vt + x)  … (b)  

 Comparing (a) & (b)    
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    … (2)  

 This is general differential equation for a one dimensional wave.  

2.1 EQUATION OF A SINUSOIDAL PROGRESSIVE WAVE 
 Particle displacement (y) 

 The displacement of a particle y from its mean position, taking y = 0 when t = 0 is given by the displacement-

time equation for simple harmonic motion 

  y = A sin t … (3) 

 where a is the amplitude of the oscillation and  = 2n, where n is the wave frequency. Hence 

  y = A sin 2nt … (4) 

 This equation is applicable to all 

individual particles affected by the wave. Suppose 

the wave is progressing forward with velocity v 

m/s. Suppose we start timing the operation when 

the wave reaches a certain particle O. Let us 

consider O as origin for the purpose of measuring 

distances. Then a particle P at a distance x from O 

will receive the wave  s later than O did. 

 

 

 Hence its displacement will have to be considered according to 

  y = A sin 2f  … (5) 

 Since v = f , f = , the displacement equation can also take the form 

  y = A sin  … (6) 

  y = A sin 2  … (7) 

 

 
 
 

 Consider a plane wave propagating with a velocity v in  

x-direction across an area S. An element of material medium 

(density =  kg/m3) will have a mass (Sdx).          

 The displacement of a particle from its equilibrium 

position is given by the wave equation.  

  y = A sin (t – kx)   
 

 

Total energy,   dE =   

  dE =  (Sdx) (A)2    

       = Sdx (22 f 2A2)  

   energy density = = 22 f2A2 (J/m3)  

 energy per unit length = S (22f 2A2)  … (8) 

  power transmitted = 22 f 2A2 Sv (J/s)  … (9) 
 

3.1 INTENSITY OF THE WAVE (I)  

 Intensity of the wave is defined as the power crossing per unit area  
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   I = 22 f2 A2v    (Watt/m2)  … (10) 

 for wave propagation through a taut string,  

  S = , the linear density in kg/m  

   Energy per unit length = 22f2 A2  … (11) 

 

 
 

 

 The speed of any mechanical wave, transverse or longitudinal, depends on both an inertial property 

of the medium and an elastic property of the medium.  

4.1 TRANSVERSE WAVE IN A STRETCHED STRING 

 Consider a transverse pulse produced in a taut string of linear mass density . Consider a small 

segment of the pulse, of length l, forming an arc of a circle of radius R. A force equal in magnitude to 

the tension T pulls tangentially on this segment at each end.  

 Let us set an observer at the centre of the pulse, which moves along with the pulse towards right. 

For the observer any small length dl of the string as shown will appear to move backward with a velocity 

v.  

 Now the small mass of the string is in a circular path of radius R moving with speed v. Therefore 

the required centripetal force is provided by the only force acting (neglecting gravity) is the component 

of tension along the radius.  

 The net restoring force on the element is  

  F = 2T sin ()  2T () =  

 The mass of the segment is m = l      

 The acceleration of this element towards the centre of the 

circle is a = , where v is the velocity of the pulse.  

 Using second law of motion  

   

 

 

  or,   … (12) 

 
 

 Two or more waves can traverse the same space independent of one another. The displacement of 

any particle in the medium at any given time is simply the sum of displacements that the individual waves 

would give it. This process of the vector addition of the displacement of the particle is called 

superposition.  

5.1 INTERFERENCE  

 When two waves of the same frequency, superimpose each other, there occurs redistribution of 

energy in the medium, which causes the variation of intensity between the two limits a minimum intensity 

and maximum intensity. This phenomenon is called interference of waves.  

 Let the two of waves be  

  y1  = A1 sin (t – kx) ; y2 = A2 sin (t – kx + )     

 According to the principle of superposition  

  y  = y1 + y2  

   = A1 sin (t – kx) + A2 sin (t – kx + )  

   = A1 sin (t – kx) (A1 + A2 cos ) + A2 sin  cos (t – kx)        
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   y  = A sin (t – kx + )  … (13) 

 where, A1 + A2 cos  = A cos     

  A2 sin  = A sin    

 and  A2 = (A1 + A2 cos)2 + (A2 sin )2   

  A2 =  + 2A1A2 cos   … (14)  

 

 If I1 & I2 are intensities of the interfering waves and  is the phase difference, then the resultant 

intensity is given by,  

   I  = I1 + I2 + 2  cos  … (15)  

 Now  Imax =  for  = 2n   

  Imin = ( )2 for  = (2n + 1)    ( where n = 0, 1, 2, 3, ……..) 

5.2 REFLECTION AND TRANSMISSION OF WAVES  

 The nature of the reflected and transmitted wave depends on the nature of end point. There are 

three possibilities.  

 (a) End point is fixed: Waves on reflection from a fixed end undergoes a phase change of 180°.  

 
 (b) End point is free: There is no phase change in waves on reflection.   

 
 (c) End point is neither completely fixed nor completely free  

 For example, consider a light string attached to a heavier string as shown in figure. If a wave pulse 

is produced on the light string moving towards the junction, a part of the wave is reflected and a part is 

transmitted on the heavier string. The reflected wave is inverted with respect to the original one (figure 

(a).  

 
 On the other hand, if the wave is produced on the heavier string, which moves towards the junction, 

a part will be reflected and a part transmitted, no inversion of wave shape will take place (as shown in 

figure (b).  

 So the rule is: if a wave enters a region where the wave velocity is smaller, the reflected wave is 

inverted. If it enters a region where the wave velocity is larger, the reflected wave is not inverted. The 

transmitted wave is never inverted.  

5.3 STANDING WAVES   

 A standing wave is formed when two identical waves travelling in the opposite directions along 

the same line interfere.  

 Consider two waves of the same frequency, speed and amplitude, which are travelling in opposite 

directions along a string. Two such waves may be represented by the equations.  

2
2

2
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2
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  y1 = A sin (t – kx)   

  y2 = A sin (kx + t)      

 Hence the resultant may be written as  

  y = y1 + y2 = A sin (t – kx) + A sin (t + kx)     

  y = 2A sin kx cos t   … (16) 

 This is the equation of a standing wave.  

Note:  

 (i)  From the above equation it is seen that a particle at any particular point ‘x’ executes simple 

harmonic motion and all the particles vibrate with the same frequency.  

 (ii)  The amplitude is not the same for different particle but varies with the location ‘x’ of the 

particle.  

 (iii) The points having maximum amplitudes are those for which 2A sin kx, has a maximum 

value of 2A, these are at the positions.  

  Kx = /2, 3 /2, 5 /2, …  

 or  x = /4, 3/4, 5/4 …. .  

 i.e.,  x = (n + 1/2) /2 = (2n + 1) /2 ; where n = 0, 1, 2 …  

 There points are called antinodes.  

 (iv)  The amplitude has minimum value of zero at positions  

 where  kx = , 2, 3, ….  

 or  x = , , , 2 …. i.e.,   x =  

 These points are called nodes.  

 (v) It is clear that the separation between consecutive nodes or consecutive antinodes is /2.  

 (vi) As the particles at the nodes do not move at all, energy cannot be transmitted across them.  

5.4  DIFFERENCES BETWEEN A TRAVELLING WAVE AND A STANDING WAVE  

 (1) In a travelling wave, the disturbance produced in a region propagates with a definite velocity 

but in a standing wave, it is confined to the region where it is produced.   

 (2) In a travelling wave, the motion of all the particles is similar in nature. In a standing wave, 

different particles move with different amplitudes.  

 (3) In a standing wave, the particles at nodes always remain in rest. In travelling waves, there is 

no particle, which always remains in rest.  

 (4) In a standing wave, all the particles cross their mean positions together. In a travelling wave, 

there is no instant when all the particles are at the mean positions together.  

 (5) In a standing wave, all the particles between two successive nodes reach their extreme positions 

together, thus moving in phase. In a travelling wave, the phases of nearby particles are always different.   

 (6) In a travelling wave, energy is transmitted from one region of space to other but in a standing 

wave, the energy of one region is always confined in that region.  

5.5 STATIONARY WAVES IN STRINGS.  

 A string of length L is stretched between two points. When the string is set into vibrations, a 

transverse progressive wave begins to travel along the string. It is reflected at the other fixed end. The 

incident and the reflected waves interfere to produce a stationary transverse wave in which the ends are 

always nodes, if both ends of string are fixed.  

 

 

 

 

 

 

Fundamental Mode  
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 (a) In the simplest form, the string vibrates in one 

loop in which the ends are the nodes and the centre is the 

antinode. This mode of vibration is known as the 

fundamental mode and frequency of vibration is known as 

the fundamental frequency or first harmonic.  

 Since the distance between consecutive nodes is  

 

 

   L = 
2

1   1 = 2L    

 If f1 is the fundamental frequency of vibration, then the velocity of transverse waves is given as,  

  v = 1 f1    

 or f1 = 
L

v

2
  … (i)  

First Overtone  

 (b) The same string under the same conditions 

may also vibrate in two loops, such that the centre is also 

the node    

   L = 22/2   2 = L   

 If f2 is frequency of vibrations  

 

2


 

2


 

 

   f2 = 
L

vv
=

 2

  

   f2 = 
L

v
  … (ii)  

 The frequency f2 is known as second harmonic or first overtone.  

Second Overtone 

 (c) The same string under the same conditions 

may also vibrate in three segments. 

   L = 
2

3 3     

    3 = L
3

2
 

 

 

 If f3 is the frequency in this mode of vibration, then,  

  f3 = 
L

v

2

3
  … (iii)  

 The frequency f3 is known as third harmonic or second overtone.  

 Thus a stretched string vibrates with frequencies, which are integral multiples of the fundamental 

frequencies. These frequencies are known as harmonics.  

 The velocity of transverse wave in stretched string is given as v = 


T
. Where T = tension in the 

string.  

  = linear density or mass per unit length of string. If the string fixed at two ends, vibrates in its 

fundamental mode, then  

  f = 


T

L2

1
  … (17) 

5.6  FREQUENCY OF THE STRETCHED STRING 
 In general, if the string vibrates in p loops, the frequency of the string under that mode is given by 
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  f = 


T

L

p

2
 … (18)  

 Based on this relation three laws of transverse vibrations of stretched strings arise. They are law of length, 

law of tension and law of mass. 

5.7 LAW OF LENGTH 
 The fundamental frequency f is inversely proportional to the length L of the stretched string. 

  f  
L

1
 … (19)  

 (or) f L = a constant (T being constant) 

5.8 LAW OF TENSION 
 The fundamental frequency is directly proportional to the square root of the tension in the string.  

  f  T  

 (or)  
T

f
 = a constant (L, m being constants) … (20) 

5.9 LAW OF MASS 
 The fundamental frequency is inversely proportional to the square root of mass per unit length of the given 

string when L and T are kept constants.  

  f  


1
 

 (or) f  = a constant (L, T being constants) … (21) 

5.10 FREQUENCY AND DENSITY OF WIRE 

 In the formula f = 


T

L2

1
 for the fundamental frequency of a stretched string, if the tension T is due to a 

weight of M kg suspended from the free end of a wire as in a sonometer then T = Mg newtons. 

 If the density of the material of the wire is  kg/m3, and the radius of cross-section is r metre then the mass/unit 

length of the wire 

  m = volume  density    = (r2  1) () kg 

 The fundamental frequency equation now becomes 

  f = 
 22

1

r

Mg

L
 … (22) 

 Note that in this relation 

 M is in kg; r is in m; g is in m/s2;  is in kg/m3 L is in m 

 

5.11 AMPLITUDE OF REFLECTED & TRANSMITTED WAVES 

 A long wire PQR  is made by joining two wires PQ and QR of equal radii. PQ has a length l1 and 

mass m1, QR has length l2 and mass m2.  The wire PQR is under a tension T. A sinusoidal wave pulse of 

amplitude Ai is sent along the wire PQ from the end P. No power is dissipated during the propagation of 

the wave pulse.  

 Let us take the direction along wire as x-axis.    
 x = 0 

Q P 

Ai 

R x 
 

 Let us take the direction along wire as x-axis   
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 Velocity of wave in wire PQ = 
11/lm

T
=  1

1

1 v
m

T
=

l
  and velocity of wave in wire  

  QR = v2   =
2

2

m

Tl
   

 Then for incident wave we can write  

  yi = Ai sin  [ t – x/v1]   … (i)  

 In reflected and transmitted wave, ‘’ will not change, therefore we can write  

  yr = Ar sin  [t + x/v1]  … (ii)  

  yt = At sin  [ t – x/v2]  … (iii)  

 Now as wave is continuous, so at the boundary (x = 0)  

 Continuity of displacement requires   

  yi + yr = yt  for x = 0  

 Substituting from (i), (ii) and (iii) in the above,  

  Ai + Ar = At   … (iv)  

 Also, at the boundary, slope of wave will be continuous, i.e.,   
xxx 


=




+



 tri yyy
 for x = 0  

 Which gives, Ai – Ar = tA
v

v











2

1   … (v)  

 Solving (iv) and (v) for Ar and At we get the required equations, i.e.,  

  Ar = iA
vv

vv

12

12

+

−
  … (23) 

 and  At = iA
vv

v

12

22

+
    … (24) 

 

 

 

 Sound is produced in a material medium by a vibrating source. Sound waves constitute alternate 

compression and rarefaction pulses travelling in the medium. The compression travels in the medium at a 

speed, which depends on the elastic and inertial properties of the medium.   

 The description in terms of pressure wave is more appropriate than the description in terms of the 

displacement wave as far as sound properties are concerned. 

6.1 SOUND AS PRESSURE WAVE 

 A longitudinal wave in a fluid is described either in terms of the longitudinal displacements suffered by the 

particles of the medium or in terms of the excess pressure generated due to the compression or rarefaction. 

 Consider a wave going in the x-direction in a fluid. Suppose 

that at a time t, the particle at the undisturbed position x suffers a 

displacement y in the x-direction. 

  







−=

v
tyy o

x
sin  … (i) 

 

A 

x 

y y + y 

x +  x  

 A is cross-sectional area. 

 Increase in volume of this element at time t is 

  V = A dy 

       = x
x









−







 −

v
t

v
yA o cos  

 where y has been obtained by differentiating equation (i) with respect to t. 

           SOUND 
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  volume strain is 
x

x
x











−

−=


vA

v
tyA

V

V
o cos

 = 







−


−

v
t

v

y o x
cos =

x

y
 

  volume strain = 
x

y
 … (25)  

 The corresponding stress i.e., the excess pressure developed in the element at x, at time t 

 is 

             p = 






 −

V

V
B  where B is the bulk modulus of the material. 

    p = 







−



v
t

v

yB o x
cos  … (ii) 

        
x


=

yB
P –  … (26) 

 Comparing equations (i) and (ii), the relation between the pressure amplitude p0 and the displacement amplitude 

s0 is 

  
B

p
yBkyy

v

B
p o

oooo



==


=

2
 where k is a wave number. … (27) 

 As observed from equations (i) and (ii), pressure wave is ‘cos ’ type, if displacement is described as ‘sin 

’ type. 

 Thus, the pressure-maxima occur where the displacement is zero and displacement-maxima occur where 

the pressure is at its normal level. 

 

6.2 SPEED OF SOUND WAVE IN A MATERIAL MEDIUM  
 The resultant force on element of fluid (which is contained 

between the positions x and x +  x where A is the area of cross 

section) is  

  F = Ap – A(p + p) = – Ap 

 Acceleration, a = 
x



A

F
 (using Newton’s law) 

 
(P + P)A 

x 

x +  x x 

PA 

 

          Also, a = 
2

2

t

y




 

       o
o y
v

By 2

2

2

=



 

   v = 


B
 … (28) 

6.3 POWER (W ) TRANSMITTED BY WAVE: 

 W = 
t

y
pA




 (Since power = 

t

FS
 and pressure = 

A

F
) = 








−



v
t

v

ByA o x2
22

cos  

 The average of cos2  over a complete cycle or over a long time is 
2

1
. 

 Intensity I is the average power transmitted across unit cross-sectional area. 

  I = 
v

Byo
22

2

1
 

   I = 
B

vpo

2

2

 … (29) 
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 (Since  = 2 f and p0 = 
v

yB o
) 

    I  2
op    

 This is similar or analogous to 

  I  2
oy  

 In other words, intensity is proportional to the square of the amplitude (whether displacement or pressure). 

 Loudness is measured in terms of sound level (in decibels i.e., dB) denoted by . 

  = 













oI

I
10log10  where I0 is the reference intensity equal to 10-12 W/m2. … (30) 

6.4 AUDIBLE RANGE AND ULTRASONICS 
 The audible range of sound waves in air in terms of frequency f  is “20 Hz to 20 kHz”. 

 Since velocity of sound in air at STP (Standard Temperature and Pressure) is v = 332 m/s, the wavelengths () 

for audibility lie in the range 1.66 cm to 16.6 m (using v = n). 

 Longitudinal mechanical waves having frequency greater than 20 kHz  are called ultrasonic waves. 

Ultrasonic sound waves also travel with same velocity 332 m/s at S.T.P. 

 Hence, the wavelength of ultrasonics  < 1.66 cm. Though human ear cannot detect these ultrasonic waves, 

certain creatures such as mosquito and bat show response to these. These waves can be produced by the frequency 

of a quartz crystal under an alternating electric field (piezo-electric effect) or by the vibrations of a ferromagnetic 

rod under an alternating magnetic field (magnetostriction effect). For infrasonic waves  > 16.6 m.  

 

6.5 LONGITUDINAL VIBRATIONS IN SOLIDS AND FLUIDS 
 The velocity of longitudinal waves in a solid or fluid is given by 

  v = 


E
  … (31) 

 where E is the elasticity of the medium.  

 Solids: In the case of solids the stress is tensile or unidirectional. The strain is linear and the modulus of 

elasticity involved is Young’s modulus.   

 Hence E = Y (Young’s modulus) 

  v = 


Y
 … (32) 

 The velocity of longitudinal wave in a solid is given by 

  v = 


=


YE
 where Y is Young’s modulus and  is its density. 

 It is possible to establish a stationary wave 

in a rod like AB, which is clamped in the middle 

and striked at one of its ends. Stationary waves are 

set up with the clamped point remaining as a node 

and the free ends as antinodes. If L is the length of 

the rod,  the wavelength of the wave then 

 

N 

A 

A A 

B 

 
 we have 

  
2


=L  

 The fundamental frequency, 
L

vv
f

2
=


=  = 



Y

L2

1
 

 Gases: In the case of gases the elasticity is bulk modulus as it brings about volume strain. Newton first 

assumed that the changes in gases are isothermal and the isothermal bulk modulus was taken by him as p. But later 

Laplace modified the formula and got the adiabatic bulk modulus which is p, where  is the ratio of specific heats 



  

                 
         12                       MAHESH SIR’S NOTES  -  7798364224  

 

of the gas. The velocity of sound in a gas is therefore  

  v = 


p
. … (33) 

6.6 VELOCITY OF SOUND IN AN IDEAL GAS  

 The motion of sound wave in air is adiabatic. In the case of an ideal gas, the relation between 

pressure P and volume V during an adiabatic process is given by  

  PV 
 = constant  

 Where  is the ratio of the heat capacity at constant pressure to that at constant volume.  

 After differentiating, we get 

  V 
 01 =+ −PV

dV

dP
 

 Since  B = – 
dV

vdP
=  P 

 (Laplace correction is constant to newtons’ formula v = 


P
) using the gas equation  



P
 = 

M

RT
 where M is the molar mass.      

 Thus  v = 
M

RT
 (T = temperature is Kelvin) … (34) 

6.7 EFFECT OF TEMPERATURE, PRESSURE AND HUMIDITY ON VELOCITY OF 

SOUND IN GASES 
 (i)  Effect of temperature:  If the specific volume of gas is v. The velocity of sound 

      = =


P

M

RT
 

 If c1 and c2 be the velocities of sound in a gas at temperatures Ct 
1  and Ct 

2  and P1 and P2 the respective 

pressures and V1 and V2 the specific volumes at these temperatures, ratio of the two velocities of sound is 

  
2

1

22

11

2

1

TR

TR

VP

VP

v

v
==  where T and T2 are the absolute temperatures. 

   
2

1

2

1

2

1

273

273

t

t

T

T

v

v

+

+
==  … (35) 

 If c and c0 are the velocities at tC and 0C, then 

  









+=








+=

+
=

546
1

273
1

273

273

0

2

1

0

0

t
v

t
vv

t

v

v

  

 Calculations would show that the velocity of sound in air increases approximately at the rate of 0.6 

metre/sec per degree rise of temperature. 

 (i) Effect of pressure: At constant temperature the ratio 


P








=

M

RT
 is constant (Boyle’s law). Hence the 

velocity of sound in gases at constant temperature is independent of pressure. 

 (ii) Effect of humidity: The presence of moisture in air decrease the density of air. Hence if the humidity 

is high the density decreases and the velocity of sound increases. Thus the velocity of sound in moist air is greater 

than the velocity of sound in dry air. 

6.8 WAVE VELOCITY AND MOLECULAR VELOCITY IN A GAS 
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 The velocity of propagation of sound waves through a gas is 

  



=

P
v  

 According to this relation the velocity of sound will depend on the pressure of the gas. Also according to 

the kinetic theory of gases the pressure of gas is 

  
2

rms
3

1
vP =  

 where  is the density of gas and vrms is the root mean square velocity of the molecules at a particular 

temperature. 

  
3

2

rmsvP
=


 

 Substituting this value of 


P
 in the above equation for velocity of sound in a gas 

  
33

2


=


= rms
rms v

v
v  

  


=
3

vv rms  … (36) 

 From the above equation if velocity of sound and  of gas are known the r.m.s velocity can be calculated. 

 

 
 

 An air column is one, which is enclosed in a pipe. When an air column is excited the column is set into 

vibration and longitudinal waves are set up. The waves are reflected back at the boundaries of air columns. The 

incident and reflected waves produce longitudinal stationary waves. 

 Suppose we consider a closed tube, which is closed at one end and open at the other. At the closed end a 

compression is reflected as compression and a rarefaction as a rarefaction. At the open end a compression is reflected 

as a rarefaction while a rarefaction is reflected as a compression. Hence the closed end must be a displacement node 

while the open end must be a displacement antinode. 

7.1 VIBRATION IN CLOSED PIPES – OVERTONES AND HARMONICS 
 A stationary wave pattern can be maintained in a closed tube containing a gas only for a frequency, which 

has one of the values making the length of the column a whole number of quarter wavelengths. It should be noted 

that the open end is always an antinode and the closed end a node. According to this condition there arises a number 

of standing waves as shown in Figure. The wave pattern, which has the lowest frequency, is called fundamental and 

the others are called overtones. 

 A 

N 

N 

N 

A 

A 
 

N N 

A 

N 
Fundamental First overtone Second overtone 

 
 First Mode of vibration (Fundamental mode) 

 The length of air column L is equal to 
4


. 

           VIBRATIONS OF AIR COLUMNS 

 

7 
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   = 4L 

  v = f  

      f  = 
L

vv

4
=


 … (37) 

 where f  is the frequency of fundamental mode. 

 Second Mode of Vibration (First overtone) 

  L = 
4

3 1  

  1 = 
3

4L
 

   frequency f1 = 
L

vv

4

3

1

=


 = 3f. … (i)  

 The frequency of first overtone is 3 times the value of fundamental. 

 Third Mode of Vibration (Second overtone) 

  Here L = 
4

5 2  

    = 
5

4L
 

  frequency .5
4

5

2

2 f
L

vv
f ==


=  … (ii)  

 When an air column is excited the fundamental and a number of possible overtones are present in the 

vibration. Of these the loudest is the fundamental and overtones progressively become weaker in intensity. The 

overtones whose frequencies are integral multiples of fundamental are called harmonics. The fundamental with 

frequency f itself is taken as first harmonic. The overtone with frequency 2f is called second harmonic and the 

overtone with frequency 3f is called third harmonic and so on. 

 In the case of closed type indicated above all odd harmonics are present and even harmonics are absent. 

 End correction: In the above discussion it is assumed that the position of antinode coincides with the open 

end of pipe exactly. This is not however true and it is found that antinode is a little bit displaced above the open 

end. If e is the end correction, then for fundamental mode. 

    )(
4

1 eL +=


 

 

 For the first overtone, 

  )(
4

3 2 eL +=


 and so on. 

 The end correction depends upon the diameter of the pipe. If d is the diameter, the end correction e = 0.3 d. 

7.2 VIBRATION IN OPEN PIPES 
 A pipe with both ends open is called open pipe. The first three modes of vibrations, starting from 

fundamental in open pipes are shown in figures below. 
 

Fundamental First overtone Second overtone  
 First mode of vibration (Fundamental mode): In the fundamental mode there is a node between antinodes at each 
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end. 

  LL 2or
2

=


=  

      
L

vv
f

2
=


=  (38) 

 Second mode of vibration (First overtone): If 1 and f1 are the wavelength and frequency of the first 

overtone in open pipe. 

  L=1  

  f
L

v

L

vv
f 2

2

2

1

1 ===


=  … (i)  

 The frequency of first overtone is twice that of fundamental. It corresponds to second harmonic. 

 Second overtone: If 2 and f2 be the wavelength and frequency of second overtone in the open pipe, 

  L = 
2

3 2  

  2 = 
3

2L
 

  f2 = 
2

v
 = 

L

v

2

3
 = 3f … (ii) 

 This corresponds to third harmonic of the vibrating system. 

 In an open pipe all the harmonics, both odd and even are present. 

7.3 FREE, DAMPED AND FORCED VIBRATIONS 
 A body capable of vibration, if excited, and set free, vibrates freely in its own natural way. The frequency 

of such free vibration depends on the mass, elastic property and dimensions of the body. The frequency is called 

free frequency or natural frequency of the body. 
 

7.4 DAMPED VIBRATIONS 

 The amplitude of free vibrations of a body gradually diminishes and finally the vibrations die away after 

sometime. This is due to the vibratory motion being damped by forces internal and external to the body. 
 

7.5 FORCED VIBRATIONS 

 If an external periodic force is applied to a body which is capable of vibration and if the frequency of the 

applied periodic force is not the same as the free frequency of the body, the body begins to vibrate initially with its 

own natural frequency but these vibrations die down quickly and the body ultimately vibrates with the frequency of 

the external periodic force. Such vibrations are called forced vibrations 

 

 

 Resonance is a special case of forced vibration. If the frequency of the external periodic force is the same 

as the natural frequency of the body, the body responds to the forced vibrations more willingly and there is a gain 

in the amplitude of its vibrations. This is called resonance. 

Resonance has vast applications in acoustics, electrical circuits and electronics. 

8.1 RESONANCE IN AIR COLUMNS-RESONANCE TUBES 
 Suppose the length of air column in a long tube can be adjusted either by dipping the tube in a reservoir of 

water or by allowing the water level to occupy a desired position in the tube by pressure flow, the column can be 

made to vibrate in resonance with an excited tuning fork kept over the mouth of the tube. 

 For two lengths of air column L1 and L2, 3L1, the 

resonance would occur and the positions correspond to the 

fundamental mode and the first overtone respectively. 

 If  be the wavelength of sound in air and v the velocity 

of sound in air, then 

  L1 + e = 
4


 

 

           RESONANCE 

 

8 
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  L2 + e = 
4

3
 

 L1 

L2 

N 

N 

A 

A 

 
 

 where e is the end correction. 

 From the above equations we get 

  
2


 = L2 – L1      or,   = 2(L2 – L1) 

  v = f  = 2f (L2 – L1) … (39) 

 where f  is the frequency of vibration of the air column which is in resonance with the tuning fork of same 

frequency.  
 

 
 

 When two interacting waves have slightly different frequencies the resultant disturbance at any 
point due to the superposition periodically fluctuates causing waxing and waning in the resultant intensity. 
The waxing and waving in the resultant intensity of two superposed waves of slightly different frequency 
are known as beats.  
 Let the displacement produced at a point by one wave be  
  y1 = A sin (2f1t - 1)     
 and the displacement produced at the point produced by the other wave of equal amplitude as  
  y2 = A sin (2f2t – 2)    
 By the principle of superposition, the resultant displacement is  
  y = y1 + y2    = A sin (2 f1t – 1) + A sin (2 f2t –2)  

  y = 2A sin  






 −
+

−

















 +
−







 +


22
2cos

22
2 12212121 t

ff
t

ff
  

  y = R  sin 















 +
−







 +


22
2 2121 t

ff
  … (40) 

 where  R = 2A 






 −
+

−


22
2cos 1221 t

ff
  

 for   21 = , R = 2A 






 −
 t

ff

2
2cos 21  

 The time for one beat is the time between consecutive maxima or minima.  
 First maxima would occur when  

  cos 2 t
ff







 −

2

21  = + 1  

 Then  2 t
ff







 −

2

21  = 0  

   t = 0  

 Second maxima would occur when cos 2 t
ff







 −

2

21 = –1  

 Then 2 =






 −
t

ff

2

21   

           BEATS 
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 or  t = 
)(

1

21 ff −
 

 The time for one beat = 








−
−

0
)(

1

21 ff
 = 

21

1

ff −
  

 Similarly it can also be shown time between two consecutive minima is 
)(

1

21 ff −
  

 Hence frequency of beat i.e., number of beats in one second = f1  f2          … (41) 
 
 

 

 

 When a sound source and an observer are in relative motion with respect to the medium in which the waves 

propagate, the frequency of waves observed is different from the frequency of sound emitted by the source. This 

phenomenon is called Doppler effect. This is due to the wave-nature of sound propagation and is therefore 

applicable to light waves also. The apparent change of colour of a star can be explained by this principle. 

10.1 CALCULATION OF APPARENT FREQUENCY  

 Suppose v is the velocity of sound in air, v0 is the velocity of the observer (O) and f is the frequency 

of the source.  
 (i) Source moves towards stationary observer: If the source S were stationary the f waves sent 
out in one second towards the observer O would occupy a distance v, and the wavelength would be v/f .  
 If S moves with a velocity vs towards O, the f waves sent out occupy a distance (v – vs) because S 
has moved a distance vs towards O in 1 s. So the apparent wavelength would be:  

  






 −
=

f

vv s   

 Thus, apparent frequency  

 f  = 
O

O

reachingwaveofwavelength

torelativesoundofvelocity
       

  










−
=


=
svv

v
f

v
f   

 

O 
• • 
S 

v 

v-vs 
vs 

v-vs 

S 

 
 (ii) Source moves away from stationary 
observer: Now, apparent wavelength  

   = 
f

vv s+
  

   Apparent frequency  
  f  = v/   

 or  f  = f 










+ svv

v
  

 

O 
• • 
S 

v 

O 
• 

S 

v+vs 

vs 

 
 (iii) Observer, moves towards stationary source  

  f  =  
O

O

reachingwaveofwavelength

torelativesoundofvelocity
 

 Here, velocity of sound relative to O = v + v0  
 and wavelength of waves reaching O = v/f  

   f  = 






 +
=

+

v

vv
f

fv

vv 00

/
   

 (iv)  Observer moves away from the stationary source  

           DOPPLER EFFECT 
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  f  = 






 −
=

−

v

vv
f

fv

vv 00

/
   

 (v) Source and observer both moves towards each other  

  f  = 













−

+
=








 −

+

ss vv

vv
f

f

vv

vv 00 )(
   

 (vi) Both moves away from each other  

  f  = f 








+

−

svv

vv 0    

 (vii) Source moves towards observer but observer moves away from source  

  f   = f 













−

−

svv

vv 0    

 (viii) Source moves away from observer but observer moves towards source  

  f  = f 








+

+

svv

vv 0   

 Effect of wind on Doppler Effect in sound: The formulae derived in the previous sections are 

valid only where there is no wind. If there is a wind velocity vw, the effective velocity of sound would 

become (v + vw) or (v – vw) according as vw is in the direction of v or opposite to it.  
 Observed frequency using Doppler’s effect is given by   

  f  = 
])[(

)])[( 0

sW

W

vvv

vvv




f    … (42) 

10.2 DOPPLER EFFECT WHEN THE SOURCE IS MOVING AT AN ANGLE TO THE 

OBSERVER 
 Let O be a stationary observer and let a source of sound of frequency f be moving along the line PQ with 

constant speed vs. 

 When the source is at P, the line PO makes angle  with PQ, 

which is the direction of vs. 

 The component of velocity vs along PO is vs cos  and it is 

towards the observer. 

 The apparent frequency in this case 

  f
vv

v
f

s

a 
−

=
cos

 … (43) 

 O 

P 
M Q 

vs 
 

 

 
 As the source moves along PQ,  increases cos  decreases and the apparent frequency continuously 

diminishes. At M,  = 90 and hence 

  fa = f  

 When the source is at Q, the component of velocity vs is vs cos  which is directed away from the observer. 

Hence the apparent frequency 

  f
vv

v
f

s

a 
+

=
cos

 … (44) 

10.3 REFLECTION OF SOUND AND ECHO 
 Like light, sound waves can also be reflected and refracted. But the sound requires an extended reflector 

like a wall as its wavelength is very large compared to that of light. 

 The phenomenon of echo is due to reflection of sound. When a sound wave is reflected by a distant reflector 

like a wall or mountain cliff an observer hears two sounds, one from the source directly and the other as reflected 

from the reflector which is the echo. 

 In order to hear a clear and distinct echo a minimum distance must be maintained between the 

reflector and the observer. This is necessary because when a sound is heard the impression persists for a 
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fraction of a second in the ear due to the persistence of hearing. Until this impression is removed the echo 

cannot be heard as a distinct sound. The persistence of hearing usually lasts for 
10

1
 th of a second. If the 

time interval between the emission of the sound and the return of the reflected wave is more than 
10

1
 th 

of a second the reflected sound is heard after a silent ‘interval’ and is called an echo. 

 

 

GENERALLY 
 Loudness of a sound depends on its intensity 

 Pitch on the frequency and 

 Quality of sound depends on the combination of frequencies, overtones and their relative intensities. 

Together these three quantities determine the characteristics of sound - musical or otherwise. 

LOUDNESS 
 Loudness is a physiological sensation in the human ear, which is intimately connected with the intensity of 

the wave incident. 

The ear is sensitive to sound of frequencies anywhere from 20 Hz to 20000 Hz and is most sensitive to frequencies 

between 2000 and 3000 Hz. 

 The ear can detect sounds varying from the hardly audible low intensity of 10–12 (W/m2) to very high 

intensities of 1 W/m2. 

 Because of this enormous range of intensity to which the ear responds, a logarithmic scale is used to measure 

loudness levels instead of a linear scale. 

If we take I0 as the standard intensity level we can define another intensity level I as a ratio 
oI

I
, which is dimensionless. 

The difference L in intensity levels of two sound waves of intensity I and I0 is defined in units of bel as 

 L = log 













oI

I
 bel = 10 log 














oI

I
 decibels (dB) … (45) 

 The standard threshold of audibility I0 is taken to be intensity of 10-12 W/m2. 

 According to this the intensity level of an average sound which may have a loudness of  

10–6 W/m2 will be 

 I = 10 log 
12

6

10

10
−

−

 dB = 10 log 106 = 60 dB 

 It is found that the intensity of the sound level must be doubled before an observer can respond to the change 

in intensity and say that the sound is definitely louder. 

PITCH 

 The pitch refers to that characteristic of sound sensation that enables one to classify a note as a high note or 

a low note. 

 Pitch depends on the frequency. The higher the frequency the higher the pitch. 

 If we go up the scale by one octave we double the frequency. 

QUALITY OR TIMBRE 

 The tone quality of any musical sound is determined by the presence of the number of overtones 

and their relative intensities 
 
 

 

 

 

 

 

           LOUDNESS, PITCH AND QUALITY OF SOUND 
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MIND MAP  

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

  

 

 

 

6. Organ Pipe:  
(1) Closed pipe:   

 f = v
n

l4

)12( −
  

(2) Open pipe: 

 f = 
l2

nv
 

7. Beat frequency  
 f = f1 – f2  
8. Doppler Effect: 

 f  = 
])[(

)])[( 0

sW

W

vvv

vvv




f   

 
 

5. Sound Wave:  

 yP = Asin (t – kx) 

 P = P0 cos (t – kx)     

 Volume strain: = 
x

y
 

 Pressure: – 
x

yP
 

 Velocity of 
longitudinal wave: 

(i) Solid: v = 


Y
  

(ii) Liquid: v = 


B
  

(iii) Gas: v = 
M

RTP 
=




  

 Intensity: I = 
B

vP

2

2
0   

 Loudness:  

  = 10 log10 (I/I0)    
 

3. Stationary waves in 
strings:   

(1) String fixed at both the 
ends 

 y = – 2asin kx cost  

(2) f = 
















T

L

n

2
;  

  = mass / length  
(3) Velocity of transverse 

wave  

 v = 


T
    

 

  

4. Amplitude of reflected 
& transmitted wave:   

 Ar = iA
vv

vv

)( 12

12

+

−
 

 At = iA
vv

v

12

22

+
 

 Phase change on 
reflection from:  

 (a) Rigid end is   
 (b) free end is zero.   
 

  

1. Wave function: 

 
2

2

dt

yd
 = v2 

2

2

xd

yd
 

 Sinusoidal wave:  

 y  = Asin (t – kx)  

  = 2 = 
T

2
  

 k = 


2
  

 

  
 
 

2. Energy of a plane 
progressive wave:  

 P = 22 f 2A2Sv (J/s)    
 Intensity of the wave  

 I = 22 f 2A2v  
(watts /m2)  
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